GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
laqr1(3) LAPACK laqr1(3)

laqr1 - laqr1: step in hseqr


subroutine claqr1 (n, h, ldh, s1, s2, v)
CLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts. subroutine dlaqr1 (n, h, ldh, sr1, si1, sr2, si2, v)
DLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts. subroutine slaqr1 (n, h, ldh, sr1, si1, sr2, si2, v)
SLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts. subroutine zlaqr1 (n, h, ldh, s1, s2, v)
ZLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts.

CLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts.

Purpose:


Given a 2-by-2 or 3-by-3 matrix H, CLAQR1 sets v to a
scalar multiple of the first column of the product
(*) K = (H - s1*I)*(H - s2*I)
scaling to avoid overflows and most underflows.
This is useful for starting double implicit shift bulges
in the QR algorithm.

Parameters

N


N is INTEGER
Order of the matrix H. N must be either 2 or 3.

H


H is COMPLEX array, dimension (LDH,N)
The 2-by-2 or 3-by-3 matrix H in (*).

LDH


LDH is INTEGER
The leading dimension of H as declared in
the calling procedure. LDH >= N

S1


S1 is COMPLEX

S2


S2 is COMPLEX
S1 and S2 are the shifts defining K in (*) above.

V


V is COMPLEX array, dimension (N)
A scalar multiple of the first column of the
matrix K in (*).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA

Definition at line 106 of file claqr1.f.

DLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts.

Purpose:


Given a 2-by-2 or 3-by-3 matrix H, DLAQR1 sets v to a
scalar multiple of the first column of the product
(*) K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)
scaling to avoid overflows and most underflows. It
is assumed that either
1) sr1 = sr2 and si1 = -si2
or
2) si1 = si2 = 0.
This is useful for starting double implicit shift bulges
in the QR algorithm.

Parameters

N


N is INTEGER
Order of the matrix H. N must be either 2 or 3.

H


H is DOUBLE PRECISION array, dimension (LDH,N)
The 2-by-2 or 3-by-3 matrix H in (*).

LDH


LDH is INTEGER
The leading dimension of H as declared in
the calling procedure. LDH >= N

SR1


SR1 is DOUBLE PRECISION

SI1


SI1 is DOUBLE PRECISION

SR2


SR2 is DOUBLE PRECISION

SI2


SI2 is DOUBLE PRECISION
The shifts in (*).

V


V is DOUBLE PRECISION array, dimension (N)
A scalar multiple of the first column of the
matrix K in (*).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA

Definition at line 120 of file dlaqr1.f.

SLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts.

Purpose:


Given a 2-by-2 or 3-by-3 matrix H, SLAQR1 sets v to a
scalar multiple of the first column of the product
(*) K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)
scaling to avoid overflows and most underflows. It
is assumed that either
1) sr1 = sr2 and si1 = -si2
or
2) si1 = si2 = 0.
This is useful for starting double implicit shift bulges
in the QR algorithm.

Parameters

N


N is INTEGER
Order of the matrix H. N must be either 2 or 3.

H


H is REAL array, dimension (LDH,N)
The 2-by-2 or 3-by-3 matrix H in (*).

LDH


LDH is INTEGER
The leading dimension of H as declared in
the calling procedure. LDH >= N

SR1


SR1 is REAL

SI1


SI1 is REAL

SR2


SR2 is REAL

SI2


SI2 is REAL
The shifts in (*).

V


V is REAL array, dimension (N)
A scalar multiple of the first column of the
matrix K in (*).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA

Definition at line 120 of file slaqr1.f.

ZLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts.

Purpose:


Given a 2-by-2 or 3-by-3 matrix H, ZLAQR1 sets v to a
scalar multiple of the first column of the product
(*) K = (H - s1*I)*(H - s2*I)
scaling to avoid overflows and most underflows.
This is useful for starting double implicit shift bulges
in the QR algorithm.

Parameters

N


N is INTEGER
Order of the matrix H. N must be either 2 or 3.

H


H is COMPLEX*16 array, dimension (LDH,N)
The 2-by-2 or 3-by-3 matrix H in (*).

LDH


LDH is INTEGER
The leading dimension of H as declared in
the calling procedure. LDH >= N

S1


S1 is COMPLEX*16

S2


S2 is COMPLEX*16
S1 and S2 are the shifts defining K in (*) above.

V


V is COMPLEX*16 array, dimension (N)
A scalar multiple of the first column of the
matrix K in (*).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA

Definition at line 106 of file zlaqr1.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:37 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.