GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
lar1v(3) LAPACK lar1v(3)

lar1v - lar1v: step in larrv, hence stemr & stegr


subroutine clar1v (n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)
CLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI. subroutine dlar1v (n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)
DLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI. subroutine slar1v (n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)
SLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI. subroutine zlar1v (n, b1, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz, mingma, r, isuppz, nrminv, resid, rqcorr, work)
ZLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI.

CLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI.

Purpose:


CLAR1V computes the (scaled) r-th column of the inverse of
the sumbmatrix in rows B1 through BN of the tridiagonal matrix
L D L**T - sigma I. When sigma is close to an eigenvalue, the
computed vector is an accurate eigenvector. Usually, r corresponds
to the index where the eigenvector is largest in magnitude.
The following steps accomplish this computation :
(a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T,
(b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T,
(c) Computation of the diagonal elements of the inverse of
L D L**T - sigma I by combining the above transforms, and choosing
r as the index where the diagonal of the inverse is (one of the)
largest in magnitude.
(d) Computation of the (scaled) r-th column of the inverse using the
twisted factorization obtained by combining the top part of the
the stationary and the bottom part of the progressive transform.

Parameters

N


N is INTEGER
The order of the matrix L D L**T.

B1


B1 is INTEGER
First index of the submatrix of L D L**T.

BN


BN is INTEGER
Last index of the submatrix of L D L**T.

LAMBDA


LAMBDA is REAL
The shift. In order to compute an accurate eigenvector,
LAMBDA should be a good approximation to an eigenvalue
of L D L**T.

L


L is REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal matrix
L, in elements 1 to N-1.

D


D is REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D.

LD


LD is REAL array, dimension (N-1)
The n-1 elements L(i)*D(i).

LLD


LLD is REAL array, dimension (N-1)
The n-1 elements L(i)*L(i)*D(i).

PIVMIN


PIVMIN is REAL
The minimum pivot in the Sturm sequence.

GAPTOL


GAPTOL is REAL
Tolerance that indicates when eigenvector entries are negligible
w.r.t. their contribution to the residual.

Z


Z is COMPLEX array, dimension (N)
On input, all entries of Z must be set to 0.
On output, Z contains the (scaled) r-th column of the
inverse. The scaling is such that Z(R) equals 1.

WANTNC


WANTNC is LOGICAL
Specifies whether NEGCNT has to be computed.

NEGCNT


NEGCNT is INTEGER
If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin
in the matrix factorization L D L**T, and NEGCNT = -1 otherwise.

ZTZ


ZTZ is REAL
The square of the 2-norm of Z.

MINGMA


MINGMA is REAL
The reciprocal of the largest (in magnitude) diagonal
element of the inverse of L D L**T - sigma I.

R


R is INTEGER
The twist index for the twisted factorization used to
compute Z.
On input, 0 <= R <= N. If R is input as 0, R is set to
the index where (L D L**T - sigma I)^{-1} is largest
in magnitude. If 1 <= R <= N, R is unchanged.
On output, R contains the twist index used to compute Z.
Ideally, R designates the position of the maximum entry in the
eigenvector.

ISUPPZ


ISUPPZ is INTEGER array, dimension (2)
The support of the vector in Z, i.e., the vector Z is
nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).

NRMINV


NRMINV is REAL
NRMINV = 1/SQRT( ZTZ )

RESID


RESID is REAL
The residual of the FP vector.
RESID = ABS( MINGMA )/SQRT( ZTZ )

RQCORR


RQCORR is REAL
The Rayleigh Quotient correction to LAMBDA.
RQCORR = MINGMA*TMP

WORK


WORK is REAL array, dimension (4*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA

Definition at line 227 of file clar1v.f.

DLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI.

Purpose:


DLAR1V computes the (scaled) r-th column of the inverse of
the sumbmatrix in rows B1 through BN of the tridiagonal matrix
L D L**T - sigma I. When sigma is close to an eigenvalue, the
computed vector is an accurate eigenvector. Usually, r corresponds
to the index where the eigenvector is largest in magnitude.
The following steps accomplish this computation :
(a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T,
(b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T,
(c) Computation of the diagonal elements of the inverse of
L D L**T - sigma I by combining the above transforms, and choosing
r as the index where the diagonal of the inverse is (one of the)
largest in magnitude.
(d) Computation of the (scaled) r-th column of the inverse using the
twisted factorization obtained by combining the top part of the
the stationary and the bottom part of the progressive transform.

Parameters

N


N is INTEGER
The order of the matrix L D L**T.

B1


B1 is INTEGER
First index of the submatrix of L D L**T.

BN


BN is INTEGER
Last index of the submatrix of L D L**T.

LAMBDA


LAMBDA is DOUBLE PRECISION
The shift. In order to compute an accurate eigenvector,
LAMBDA should be a good approximation to an eigenvalue
of L D L**T.

L


L is DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal matrix
L, in elements 1 to N-1.

D


D is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D.

LD


LD is DOUBLE PRECISION array, dimension (N-1)
The n-1 elements L(i)*D(i).

LLD


LLD is DOUBLE PRECISION array, dimension (N-1)
The n-1 elements L(i)*L(i)*D(i).

PIVMIN


PIVMIN is DOUBLE PRECISION
The minimum pivot in the Sturm sequence.

GAPTOL


GAPTOL is DOUBLE PRECISION
Tolerance that indicates when eigenvector entries are negligible
w.r.t. their contribution to the residual.

Z


Z is DOUBLE PRECISION array, dimension (N)
On input, all entries of Z must be set to 0.
On output, Z contains the (scaled) r-th column of the
inverse. The scaling is such that Z(R) equals 1.

WANTNC


WANTNC is LOGICAL
Specifies whether NEGCNT has to be computed.

NEGCNT


NEGCNT is INTEGER
If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin
in the matrix factorization L D L**T, and NEGCNT = -1 otherwise.

ZTZ


ZTZ is DOUBLE PRECISION
The square of the 2-norm of Z.

MINGMA


MINGMA is DOUBLE PRECISION
The reciprocal of the largest (in magnitude) diagonal
element of the inverse of L D L**T - sigma I.

R


R is INTEGER
The twist index for the twisted factorization used to
compute Z.
On input, 0 <= R <= N. If R is input as 0, R is set to
the index where (L D L**T - sigma I)^{-1} is largest
in magnitude. If 1 <= R <= N, R is unchanged.
On output, R contains the twist index used to compute Z.
Ideally, R designates the position of the maximum entry in the
eigenvector.

ISUPPZ


ISUPPZ is INTEGER array, dimension (2)
The support of the vector in Z, i.e., the vector Z is
nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).

NRMINV


NRMINV is DOUBLE PRECISION
NRMINV = 1/SQRT( ZTZ )

RESID


RESID is DOUBLE PRECISION
The residual of the FP vector.
RESID = ABS( MINGMA )/SQRT( ZTZ )

RQCORR


RQCORR is DOUBLE PRECISION
The Rayleigh Quotient correction to LAMBDA.
RQCORR = MINGMA*TMP

WORK


WORK is DOUBLE PRECISION array, dimension (4*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA

Definition at line 227 of file dlar1v.f.

SLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI.

Purpose:


SLAR1V computes the (scaled) r-th column of the inverse of
the sumbmatrix in rows B1 through BN of the tridiagonal matrix
L D L**T - sigma I. When sigma is close to an eigenvalue, the
computed vector is an accurate eigenvector. Usually, r corresponds
to the index where the eigenvector is largest in magnitude.
The following steps accomplish this computation :
(a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T,
(b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T,
(c) Computation of the diagonal elements of the inverse of
L D L**T - sigma I by combining the above transforms, and choosing
r as the index where the diagonal of the inverse is (one of the)
largest in magnitude.
(d) Computation of the (scaled) r-th column of the inverse using the
twisted factorization obtained by combining the top part of the
the stationary and the bottom part of the progressive transform.

Parameters

N


N is INTEGER
The order of the matrix L D L**T.

B1


B1 is INTEGER
First index of the submatrix of L D L**T.

BN


BN is INTEGER
Last index of the submatrix of L D L**T.

LAMBDA


LAMBDA is REAL
The shift. In order to compute an accurate eigenvector,
LAMBDA should be a good approximation to an eigenvalue
of L D L**T.

L


L is REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal matrix
L, in elements 1 to N-1.

D


D is REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D.

LD


LD is REAL array, dimension (N-1)
The n-1 elements L(i)*D(i).

LLD


LLD is REAL array, dimension (N-1)
The n-1 elements L(i)*L(i)*D(i).

PIVMIN


PIVMIN is REAL
The minimum pivot in the Sturm sequence.

GAPTOL


GAPTOL is REAL
Tolerance that indicates when eigenvector entries are negligible
w.r.t. their contribution to the residual.

Z


Z is REAL array, dimension (N)
On input, all entries of Z must be set to 0.
On output, Z contains the (scaled) r-th column of the
inverse. The scaling is such that Z(R) equals 1.

WANTNC


WANTNC is LOGICAL
Specifies whether NEGCNT has to be computed.

NEGCNT


NEGCNT is INTEGER
If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin
in the matrix factorization L D L**T, and NEGCNT = -1 otherwise.

ZTZ


ZTZ is REAL
The square of the 2-norm of Z.

MINGMA


MINGMA is REAL
The reciprocal of the largest (in magnitude) diagonal
element of the inverse of L D L**T - sigma I.

R


R is INTEGER
The twist index for the twisted factorization used to
compute Z.
On input, 0 <= R <= N. If R is input as 0, R is set to
the index where (L D L**T - sigma I)^{-1} is largest
in magnitude. If 1 <= R <= N, R is unchanged.
On output, R contains the twist index used to compute Z.
Ideally, R designates the position of the maximum entry in the
eigenvector.

ISUPPZ


ISUPPZ is INTEGER array, dimension (2)
The support of the vector in Z, i.e., the vector Z is
nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).

NRMINV


NRMINV is REAL
NRMINV = 1/SQRT( ZTZ )

RESID


RESID is REAL
The residual of the FP vector.
RESID = ABS( MINGMA )/SQRT( ZTZ )

RQCORR


RQCORR is REAL
The Rayleigh Quotient correction to LAMBDA.
RQCORR = MINGMA*TMP

WORK


WORK is REAL array, dimension (4*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA

Definition at line 227 of file slar1v.f.

ZLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI.

Purpose:


ZLAR1V computes the (scaled) r-th column of the inverse of
the sumbmatrix in rows B1 through BN of the tridiagonal matrix
L D L**T - sigma I. When sigma is close to an eigenvalue, the
computed vector is an accurate eigenvector. Usually, r corresponds
to the index where the eigenvector is largest in magnitude.
The following steps accomplish this computation :
(a) Stationary qd transform, L D L**T - sigma I = L(+) D(+) L(+)**T,
(b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T,
(c) Computation of the diagonal elements of the inverse of
L D L**T - sigma I by combining the above transforms, and choosing
r as the index where the diagonal of the inverse is (one of the)
largest in magnitude.
(d) Computation of the (scaled) r-th column of the inverse using the
twisted factorization obtained by combining the top part of the
the stationary and the bottom part of the progressive transform.

Parameters

N


N is INTEGER
The order of the matrix L D L**T.

B1


B1 is INTEGER
First index of the submatrix of L D L**T.

BN


BN is INTEGER
Last index of the submatrix of L D L**T.

LAMBDA


LAMBDA is DOUBLE PRECISION
The shift. In order to compute an accurate eigenvector,
LAMBDA should be a good approximation to an eigenvalue
of L D L**T.

L


L is DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal matrix
L, in elements 1 to N-1.

D


D is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D.

LD


LD is DOUBLE PRECISION array, dimension (N-1)
The n-1 elements L(i)*D(i).

LLD


LLD is DOUBLE PRECISION array, dimension (N-1)
The n-1 elements L(i)*L(i)*D(i).

PIVMIN


PIVMIN is DOUBLE PRECISION
The minimum pivot in the Sturm sequence.

GAPTOL


GAPTOL is DOUBLE PRECISION
Tolerance that indicates when eigenvector entries are negligible
w.r.t. their contribution to the residual.

Z


Z is COMPLEX*16 array, dimension (N)
On input, all entries of Z must be set to 0.
On output, Z contains the (scaled) r-th column of the
inverse. The scaling is such that Z(R) equals 1.

WANTNC


WANTNC is LOGICAL
Specifies whether NEGCNT has to be computed.

NEGCNT


NEGCNT is INTEGER
If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin
in the matrix factorization L D L**T, and NEGCNT = -1 otherwise.

ZTZ


ZTZ is DOUBLE PRECISION
The square of the 2-norm of Z.

MINGMA


MINGMA is DOUBLE PRECISION
The reciprocal of the largest (in magnitude) diagonal
element of the inverse of L D L**T - sigma I.

R


R is INTEGER
The twist index for the twisted factorization used to
compute Z.
On input, 0 <= R <= N. If R is input as 0, R is set to
the index where (L D L**T - sigma I)^{-1} is largest
in magnitude. If 1 <= R <= N, R is unchanged.
On output, R contains the twist index used to compute Z.
Ideally, R designates the position of the maximum entry in the
eigenvector.

ISUPPZ


ISUPPZ is INTEGER array, dimension (2)
The support of the vector in Z, i.e., the vector Z is
nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).

NRMINV


NRMINV is DOUBLE PRECISION
NRMINV = 1/SQRT( ZTZ )

RESID


RESID is DOUBLE PRECISION
The residual of the FP vector.
RESID = ABS( MINGMA )/SQRT( ZTZ )

RQCORR


RQCORR is DOUBLE PRECISION
The Rayleigh Quotient correction to LAMBDA.
RQCORR = MINGMA*TMP

WORK


WORK is DOUBLE PRECISION array, dimension (4*N)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA

Definition at line 227 of file zlar1v.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:37 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.