GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
larfx(3) LAPACK larfx(3)

larfx - larfx: apply Householder reflector, unrolled


subroutine clarfx (side, m, n, v, tau, c, ldc, work)
CLARFX applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order ≤ 10. subroutine dlarfx (side, m, n, v, tau, c, ldc, work)
DLARFX applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order ≤ 10. subroutine slarfx (side, m, n, v, tau, c, ldc, work)
SLARFX applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order ≤ 10. subroutine zlarfx (side, m, n, v, tau, c, ldc, work)
ZLARFX applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order ≤ 10.

CLARFX applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order ≤ 10.

Purpose:


CLARFX applies a complex elementary reflector H to a complex m by n
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v**H
where tau is a complex scalar and v is a complex vector.
If tau = 0, then H is taken to be the unit matrix
This version uses inline code if H has order < 11.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': form H * C
= 'R': form C * H

M


M is INTEGER
The number of rows of the matrix C.

N


N is INTEGER
The number of columns of the matrix C.

V


V is COMPLEX array, dimension (M) if SIDE = 'L'
or (N) if SIDE = 'R'
The vector v in the representation of H.

TAU


TAU is COMPLEX
The value tau in the representation of H.

C


C is COMPLEX array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is COMPLEX array, dimension (N) if SIDE = 'L'
or (M) if SIDE = 'R'
WORK is not referenced if H has order < 11.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 118 of file clarfx.f.

DLARFX applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order ≤ 10.

Purpose:


DLARFX applies a real elementary reflector H to a real m by n
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v**T
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix
This version uses inline code if H has order < 11.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': form H * C
= 'R': form C * H

M


M is INTEGER
The number of rows of the matrix C.

N


N is INTEGER
The number of columns of the matrix C.

V


V is DOUBLE PRECISION array, dimension (M) if SIDE = 'L'
or (N) if SIDE = 'R'
The vector v in the representation of H.

TAU


TAU is DOUBLE PRECISION
The value tau in the representation of H.

C


C is DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= (1,M).

WORK


WORK is DOUBLE PRECISION array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
WORK is not referenced if H has order < 11.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 119 of file dlarfx.f.

SLARFX applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order ≤ 10.

Purpose:


SLARFX applies a real elementary reflector H to a real m by n
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v**T
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix
This version uses inline code if H has order < 11.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': form H * C
= 'R': form C * H

M


M is INTEGER
The number of rows of the matrix C.

N


N is INTEGER
The number of columns of the matrix C.

V


V is REAL array, dimension (M) if SIDE = 'L'
or (N) if SIDE = 'R'
The vector v in the representation of H.

TAU


TAU is REAL
The value tau in the representation of H.

C


C is REAL array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= (1,M).

WORK


WORK is REAL array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
WORK is not referenced if H has order < 11.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 119 of file slarfx.f.

ZLARFX applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order ≤ 10.

Purpose:


ZLARFX applies a complex elementary reflector H to a complex m by n
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v**H
where tau is a complex scalar and v is a complex vector.
If tau = 0, then H is taken to be the unit matrix
This version uses inline code if H has order < 11.

Parameters

SIDE


SIDE is CHARACTER*1
= 'L': form H * C
= 'R': form C * H

M


M is INTEGER
The number of rows of the matrix C.

N


N is INTEGER
The number of columns of the matrix C.

V


V is COMPLEX*16 array, dimension (M) if SIDE = 'L'
or (N) if SIDE = 'R'
The vector v in the representation of H.

TAU


TAU is COMPLEX*16
The value tau in the representation of H.

C


C is COMPLEX*16 array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is COMPLEX*16 array, dimension (N) if SIDE = 'L'
or (M) if SIDE = 'R'
WORK is not referenced if H has order < 11.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 118 of file zlarfx.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:36 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.