GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
larzt(3) LAPACK larzt(3)

larzt - larzt: generate T matrix


subroutine clarzt (direct, storev, n, k, v, ldv, tau, t, ldt)
CLARZT forms the triangular factor T of a block reflector H = I - vtvH. subroutine dlarzt (direct, storev, n, k, v, ldv, tau, t, ldt)
DLARZT forms the triangular factor T of a block reflector H = I - vtvH. subroutine slarzt (direct, storev, n, k, v, ldv, tau, t, ldt)
SLARZT forms the triangular factor T of a block reflector H = I - vtvH. subroutine zlarzt (direct, storev, n, k, v, ldv, tau, t, ldt)
ZLARZT forms the triangular factor T of a block reflector H = I - vtvH.

CLARZT forms the triangular factor T of a block reflector H = I - vtvH.

Purpose:


CLARZT forms the triangular factor T of a complex block reflector
H of order > n, which is defined as a product of k elementary
reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V**H
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V**H * T * V
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.

Parameters

DIRECT


DIRECT is CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
= 'B': H = H(k) . . . H(2) H(1) (Backward)

STOREV


STOREV is CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
= 'C': columnwise (not supported yet)
= 'R': rowwise

N


N is INTEGER
The order of the block reflector H. N >= 0.

K


K is INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.

V


V is COMPLEX array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.

LDV


LDV is INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.

TAU


TAU is COMPLEX array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).

T


T is COMPLEX array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.

LDT


LDT is INTEGER
The leading dimension of the array T. LDT >= K.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

Further Details:


The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
______V_____
( v1 v2 v3 ) / \
( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 )
( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 )
( v1 v2 v3 )
. . .
. . .
1 . .
1 .
1
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
______V_____
1 / \
. 1 ( 1 . . . . v1 v1 v1 v1 v1 )
. . 1 ( . 1 . . . v2 v2 v2 v2 v2 )
. . . ( . . 1 . . v3 v3 v3 v3 v3 )
. . .
( v1 v2 v3 )
( v1 v2 v3 )
V = ( v1 v2 v3 )
( v1 v2 v3 )
( v1 v2 v3 )

Definition at line 184 of file clarzt.f.

DLARZT forms the triangular factor T of a block reflector H = I - vtvH.

Purpose:


DLARZT forms the triangular factor T of a real block reflector
H of order > n, which is defined as a product of k elementary
reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V**T
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V**T * T * V
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.

Parameters

DIRECT


DIRECT is CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
= 'B': H = H(k) . . . H(2) H(1) (Backward)

STOREV


STOREV is CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
= 'C': columnwise (not supported yet)
= 'R': rowwise

N


N is INTEGER
The order of the block reflector H. N >= 0.

K


K is INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.

V


V is DOUBLE PRECISION array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.

LDV


LDV is INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.

TAU


TAU is DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).

T


T is DOUBLE PRECISION array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.

LDT


LDT is INTEGER
The leading dimension of the array T. LDT >= K.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

Further Details:


The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
______V_____
( v1 v2 v3 ) / \
( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 )
( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 )
( v1 v2 v3 )
. . .
. . .
1 . .
1 .
1
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
______V_____
1 / \
. 1 ( 1 . . . . v1 v1 v1 v1 v1 )
. . 1 ( . 1 . . . v2 v2 v2 v2 v2 )
. . . ( . . 1 . . v3 v3 v3 v3 v3 )
. . .
( v1 v2 v3 )
( v1 v2 v3 )
V = ( v1 v2 v3 )
( v1 v2 v3 )
( v1 v2 v3 )

Definition at line 184 of file dlarzt.f.

SLARZT forms the triangular factor T of a block reflector H = I - vtvH.

Purpose:


SLARZT forms the triangular factor T of a real block reflector
H of order > n, which is defined as a product of k elementary
reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V**T
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V**T * T * V
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.

Parameters

DIRECT


DIRECT is CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
= 'B': H = H(k) . . . H(2) H(1) (Backward)

STOREV


STOREV is CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
= 'C': columnwise (not supported yet)
= 'R': rowwise

N


N is INTEGER
The order of the block reflector H. N >= 0.

K


K is INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.

V


V is REAL array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.

LDV


LDV is INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.

TAU


TAU is REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).

T


T is REAL array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.

LDT


LDT is INTEGER
The leading dimension of the array T. LDT >= K.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

Further Details:


The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
______V_____
( v1 v2 v3 ) / \
( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 )
( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 )
( v1 v2 v3 )
. . .
. . .
1 . .
1 .
1
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
______V_____
1 / \
. 1 ( 1 . . . . v1 v1 v1 v1 v1 )
. . 1 ( . 1 . . . v2 v2 v2 v2 v2 )
. . . ( . . 1 . . v3 v3 v3 v3 v3 )
. . .
( v1 v2 v3 )
( v1 v2 v3 )
V = ( v1 v2 v3 )
( v1 v2 v3 )
( v1 v2 v3 )

Definition at line 184 of file slarzt.f.

ZLARZT forms the triangular factor T of a block reflector H = I - vtvH.

Purpose:


ZLARZT forms the triangular factor T of a complex block reflector
H of order > n, which is defined as a product of k elementary
reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V**H
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V**H * T * V
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.

Parameters

DIRECT


DIRECT is CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
= 'B': H = H(k) . . . H(2) H(1) (Backward)

STOREV


STOREV is CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
= 'C': columnwise (not supported yet)
= 'R': rowwise

N


N is INTEGER
The order of the block reflector H. N >= 0.

K


K is INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.

V


V is COMPLEX*16 array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.

LDV


LDV is INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.

TAU


TAU is COMPLEX*16 array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).

T


T is COMPLEX*16 array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.

LDT


LDT is INTEGER
The leading dimension of the array T. LDT >= K.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

Further Details:


The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
______V_____
( v1 v2 v3 ) / \
( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 )
( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 )
( v1 v2 v3 )
. . .
. . .
1 . .
1 .
1
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
______V_____
1 / \
. 1 ( 1 . . . . v1 v1 v1 v1 v1 )
. . 1 ( . 1 . . . v2 v2 v2 v2 v2 )
. . . ( . . 1 . . v3 v3 v3 v3 v3 )
. . .
( v1 v2 v3 )
( v1 v2 v3 )
V = ( v1 v2 v3 )
( v1 v2 v3 )
( v1 v2 v3 )

Definition at line 184 of file zlarzt.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:36 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.