GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
lasd4(3) LAPACK lasd4(3)

lasd4 - lasd4: D&C step: secular equation nonlinear solver


subroutine dlasd4 (n, i, d, z, delta, rho, sigma, work, info)
DLASD4 computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used by dbdsdc. subroutine slasd4 (n, i, d, z, delta, rho, sigma, work, info)
SLASD4 computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used by sbdsdc.

DLASD4 computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used by dbdsdc.

Purpose:


This subroutine computes the square root of the I-th updated
eigenvalue of a positive symmetric rank-one modification to
a positive diagonal matrix whose entries are given as the squares
of the corresponding entries in the array d, and that
0 <= D(i) < D(j) for i < j
and that RHO > 0. This is arranged by the calling routine, and is
no loss in generality. The rank-one modified system is thus
diag( D ) * diag( D ) + RHO * Z * Z_transpose.
where we assume the Euclidean norm of Z is 1.
The method consists of approximating the rational functions in the
secular equation by simpler interpolating rational functions.

Parameters

N


N is INTEGER
The length of all arrays.

I


I is INTEGER
The index of the eigenvalue to be computed. 1 <= I <= N.

D


D is DOUBLE PRECISION array, dimension ( N )
The original eigenvalues. It is assumed that they are in
order, 0 <= D(I) < D(J) for I < J.

Z


Z is DOUBLE PRECISION array, dimension ( N )
The components of the updating vector.

DELTA


DELTA is DOUBLE PRECISION array, dimension ( N )
If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th
component. If N = 1, then DELTA(1) = 1. The vector DELTA
contains the information necessary to construct the
(singular) eigenvectors.

RHO


RHO is DOUBLE PRECISION
The scalar in the symmetric updating formula.

SIGMA


SIGMA is DOUBLE PRECISION
The computed sigma_I, the I-th updated eigenvalue.

WORK


WORK is DOUBLE PRECISION array, dimension ( N )
If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th
component. If N = 1, then WORK( 1 ) = 1.

INFO


INFO is INTEGER
= 0: successful exit
> 0: if INFO = 1, the updating process failed.

Internal Parameters:


Logical variable ORGATI (origin-at-i?) is used for distinguishing
whether D(i) or D(i+1) is treated as the origin.
ORGATI = .true. origin at i
ORGATI = .false. origin at i+1
Logical variable SWTCH3 (switch-for-3-poles?) is for noting
if we are working with THREE poles!
MAXIT is the maximum number of iterations allowed for each
eigenvalue.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA

Definition at line 152 of file dlasd4.f.

SLASD4 computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used by sbdsdc.

Purpose:


This subroutine computes the square root of the I-th updated
eigenvalue of a positive symmetric rank-one modification to
a positive diagonal matrix whose entries are given as the squares
of the corresponding entries in the array d, and that
0 <= D(i) < D(j) for i < j
and that RHO > 0. This is arranged by the calling routine, and is
no loss in generality. The rank-one modified system is thus
diag( D ) * diag( D ) + RHO * Z * Z_transpose.
where we assume the Euclidean norm of Z is 1.
The method consists of approximating the rational functions in the
secular equation by simpler interpolating rational functions.

Parameters

N


N is INTEGER
The length of all arrays.

I


I is INTEGER
The index of the eigenvalue to be computed. 1 <= I <= N.

D


D is REAL array, dimension ( N )
The original eigenvalues. It is assumed that they are in
order, 0 <= D(I) < D(J) for I < J.

Z


Z is REAL array, dimension ( N )
The components of the updating vector.

DELTA


DELTA is REAL array, dimension ( N )
If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th
component. If N = 1, then DELTA(1) = 1. The vector DELTA
contains the information necessary to construct the
(singular) eigenvectors.

RHO


RHO is REAL
The scalar in the symmetric updating formula.

SIGMA


SIGMA is REAL
The computed sigma_I, the I-th updated eigenvalue.

WORK


WORK is REAL array, dimension ( N )
If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th
component. If N = 1, then WORK( 1 ) = 1.

INFO


INFO is INTEGER
= 0: successful exit
> 0: if INFO = 1, the updating process failed.

Internal Parameters:


Logical variable ORGATI (origin-at-i?) is used for distinguishing
whether D(i) or D(i+1) is treated as the origin.
ORGATI = .true. origin at i
ORGATI = .false. origin at i+1
Logical variable SWTCH3 (switch-for-3-poles?) is for noting
if we are working with THREE poles!
MAXIT is the maximum number of iterations allowed for each
eigenvalue.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA

Definition at line 152 of file slasd4.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:37 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.