GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
lasd5(3) LAPACK lasd5(3)

lasd5 - lasd5: D&C step: secular equation, 2x2


subroutine dlasd5 (i, d, z, delta, rho, dsigma, work)
DLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc. subroutine slasd5 (i, d, z, delta, rho, dsigma, work)
SLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.

DLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.

Purpose:


This subroutine computes the square root of the I-th eigenvalue
of a positive symmetric rank-one modification of a 2-by-2 diagonal
matrix
diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
The diagonal entries in the array D are assumed to satisfy
0 <= D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.

Parameters

I


I is INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.

D


D is DOUBLE PRECISION array, dimension ( 2 )
The original eigenvalues. We assume 0 <= D(1) < D(2).

Z


Z is DOUBLE PRECISION array, dimension ( 2 )
The components of the updating vector.

DELTA


DELTA is DOUBLE PRECISION array, dimension ( 2 )
Contains (D(j) - sigma_I) in its j-th component.
The vector DELTA contains the information necessary
to construct the eigenvectors.

RHO


RHO is DOUBLE PRECISION
The scalar in the symmetric updating formula.

DSIGMA


DSIGMA is DOUBLE PRECISION
The computed sigma_I, the I-th updated eigenvalue.

WORK


WORK is DOUBLE PRECISION array, dimension ( 2 )
WORK contains (D(j) + sigma_I) in its j-th component.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA

Definition at line 115 of file dlasd5.f.

SLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by sbdsdc.

Purpose:


This subroutine computes the square root of the I-th eigenvalue
of a positive symmetric rank-one modification of a 2-by-2 diagonal
matrix
diag( D ) * diag( D ) + RHO * Z * transpose(Z) .
The diagonal entries in the array D are assumed to satisfy
0 <= D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.

Parameters

I


I is INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.

D


D is REAL array, dimension (2)
The original eigenvalues. We assume 0 <= D(1) < D(2).

Z


Z is REAL array, dimension (2)
The components of the updating vector.

DELTA


DELTA is REAL array, dimension (2)
Contains (D(j) - sigma_I) in its j-th component.
The vector DELTA contains the information necessary
to construct the eigenvectors.

RHO


RHO is REAL
The scalar in the symmetric updating formula.

DSIGMA


DSIGMA is REAL
The computed sigma_I, the I-th updated eigenvalue.

WORK


WORK is REAL array, dimension (2)
WORK contains (D(j) + sigma_I) in its j-th component.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA

Definition at line 115 of file slasd5.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:37 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.