GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
lasr(3) LAPACK lasr(3)

lasr - lasr: apply series of plane rotations


subroutine clasr (side, pivot, direct, m, n, c, s, a, lda)
CLASR applies a sequence of plane rotations to a general rectangular matrix. subroutine dlasr (side, pivot, direct, m, n, c, s, a, lda)
DLASR applies a sequence of plane rotations to a general rectangular matrix. subroutine slasr (side, pivot, direct, m, n, c, s, a, lda)
SLASR applies a sequence of plane rotations to a general rectangular matrix. subroutine zlasr (side, pivot, direct, m, n, c, s, a, lda)
ZLASR applies a sequence of plane rotations to a general rectangular matrix.

CLASR applies a sequence of plane rotations to a general rectangular matrix.

Purpose:


CLASR applies a sequence of real plane rotations to a complex matrix
A, from either the left or the right.
When SIDE = 'L', the transformation takes the form
A := P*A
and when SIDE = 'R', the transformation takes the form
A := A*P**T
where P is an orthogonal matrix consisting of a sequence of z plane
rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
and P**T is the transpose of P.
When DIRECT = 'F' (Forward sequence), then
P = P(z-1) * ... * P(2) * P(1)
and when DIRECT = 'B' (Backward sequence), then
P = P(1) * P(2) * ... * P(z-1)
where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
R(k) = ( c(k) s(k) )
= ( -s(k) c(k) ).
When PIVOT = 'V' (Variable pivot), the rotation is performed
for the plane (k,k+1), i.e., P(k) has the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears as a rank-2 modification to the identity matrix in
rows and columns k and k+1.
When PIVOT = 'T' (Top pivot), the rotation is performed for the
plane (1,k+1), so P(k) has the form
P(k) = ( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears in rows and columns 1 and k+1.
Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
performed for the plane (k,z), giving P(k) the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
where R(k) appears in rows and columns k and z. The rotations are
performed without ever forming P(k) explicitly.

Parameters

SIDE


SIDE is CHARACTER*1
Specifies whether the plane rotation matrix P is applied to
A on the left or the right.
= 'L': Left, compute A := P*A
= 'R': Right, compute A:= A*P**T

PIVOT


PIVOT is CHARACTER*1
Specifies the plane for which P(k) is a plane rotation
matrix.
= 'V': Variable pivot, the plane (k,k+1)
= 'T': Top pivot, the plane (1,k+1)
= 'B': Bottom pivot, the plane (k,z)

DIRECT


DIRECT is CHARACTER*1
Specifies whether P is a forward or backward sequence of
plane rotations.
= 'F': Forward, P = P(z-1)*...*P(2)*P(1)
= 'B': Backward, P = P(1)*P(2)*...*P(z-1)

M


M is INTEGER
The number of rows of the matrix A. If m <= 1, an immediate
return is effected.

N


N is INTEGER
The number of columns of the matrix A. If n <= 1, an
immediate return is effected.

C


C is REAL array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The cosines c(k) of the plane rotations.

S


S is REAL array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The sines s(k) of the plane rotations. The 2-by-2 plane
rotation part of the matrix P(k), R(k), has the form
R(k) = ( c(k) s(k) )
( -s(k) c(k) ).

A


A is COMPLEX array, dimension (LDA,N)
The M-by-N matrix A. On exit, A is overwritten by P*A if
SIDE = 'R' or by A*P**T if SIDE = 'L'.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 199 of file clasr.f.

DLASR applies a sequence of plane rotations to a general rectangular matrix.

Purpose:


DLASR applies a sequence of plane rotations to a real matrix A,
from either the left or the right.
When SIDE = 'L', the transformation takes the form
A := P*A
and when SIDE = 'R', the transformation takes the form
A := A*P**T
where P is an orthogonal matrix consisting of a sequence of z plane
rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
and P**T is the transpose of P.
When DIRECT = 'F' (Forward sequence), then
P = P(z-1) * ... * P(2) * P(1)
and when DIRECT = 'B' (Backward sequence), then
P = P(1) * P(2) * ... * P(z-1)
where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
R(k) = ( c(k) s(k) )
= ( -s(k) c(k) ).
When PIVOT = 'V' (Variable pivot), the rotation is performed
for the plane (k,k+1), i.e., P(k) has the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears as a rank-2 modification to the identity matrix in
rows and columns k and k+1.
When PIVOT = 'T' (Top pivot), the rotation is performed for the
plane (1,k+1), so P(k) has the form
P(k) = ( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears in rows and columns 1 and k+1.
Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
performed for the plane (k,z), giving P(k) the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
where R(k) appears in rows and columns k and z. The rotations are
performed without ever forming P(k) explicitly.

Parameters

SIDE


SIDE is CHARACTER*1
Specifies whether the plane rotation matrix P is applied to
A on the left or the right.
= 'L': Left, compute A := P*A
= 'R': Right, compute A:= A*P**T

PIVOT


PIVOT is CHARACTER*1
Specifies the plane for which P(k) is a plane rotation
matrix.
= 'V': Variable pivot, the plane (k,k+1)
= 'T': Top pivot, the plane (1,k+1)
= 'B': Bottom pivot, the plane (k,z)

DIRECT


DIRECT is CHARACTER*1
Specifies whether P is a forward or backward sequence of
plane rotations.
= 'F': Forward, P = P(z-1)*...*P(2)*P(1)
= 'B': Backward, P = P(1)*P(2)*...*P(z-1)

M


M is INTEGER
The number of rows of the matrix A. If m <= 1, an immediate
return is effected.

N


N is INTEGER
The number of columns of the matrix A. If n <= 1, an
immediate return is effected.

C


C is DOUBLE PRECISION array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The cosines c(k) of the plane rotations.

S


S is DOUBLE PRECISION array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The sines s(k) of the plane rotations. The 2-by-2 plane
rotation part of the matrix P(k), R(k), has the form
R(k) = ( c(k) s(k) )
( -s(k) c(k) ).

A


A is DOUBLE PRECISION array, dimension (LDA,N)
The M-by-N matrix A. On exit, A is overwritten by P*A if
SIDE = 'L' or by A*P**T if SIDE = 'R'.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 198 of file dlasr.f.

SLASR applies a sequence of plane rotations to a general rectangular matrix.

Purpose:


SLASR applies a sequence of plane rotations to a real matrix A,
from either the left or the right.
When SIDE = 'L', the transformation takes the form
A := P*A
and when SIDE = 'R', the transformation takes the form
A := A*P**T
where P is an orthogonal matrix consisting of a sequence of z plane
rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
and P**T is the transpose of P.
When DIRECT = 'F' (Forward sequence), then
P = P(z-1) * ... * P(2) * P(1)
and when DIRECT = 'B' (Backward sequence), then
P = P(1) * P(2) * ... * P(z-1)
where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
R(k) = ( c(k) s(k) )
= ( -s(k) c(k) ).
When PIVOT = 'V' (Variable pivot), the rotation is performed
for the plane (k,k+1), i.e., P(k) has the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears as a rank-2 modification to the identity matrix in
rows and columns k and k+1.
When PIVOT = 'T' (Top pivot), the rotation is performed for the
plane (1,k+1), so P(k) has the form
P(k) = ( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears in rows and columns 1 and k+1.
Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
performed for the plane (k,z), giving P(k) the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
where R(k) appears in rows and columns k and z. The rotations are
performed without ever forming P(k) explicitly.

Parameters

SIDE


SIDE is CHARACTER*1
Specifies whether the plane rotation matrix P is applied to
A on the left or the right.
= 'L': Left, compute A := P*A
= 'R': Right, compute A:= A*P**T

PIVOT


PIVOT is CHARACTER*1
Specifies the plane for which P(k) is a plane rotation
matrix.
= 'V': Variable pivot, the plane (k,k+1)
= 'T': Top pivot, the plane (1,k+1)
= 'B': Bottom pivot, the plane (k,z)

DIRECT


DIRECT is CHARACTER*1
Specifies whether P is a forward or backward sequence of
plane rotations.
= 'F': Forward, P = P(z-1)*...*P(2)*P(1)
= 'B': Backward, P = P(1)*P(2)*...*P(z-1)

M


M is INTEGER
The number of rows of the matrix A. If m <= 1, an immediate
return is effected.

N


N is INTEGER
The number of columns of the matrix A. If n <= 1, an
immediate return is effected.

C


C is REAL array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The cosines c(k) of the plane rotations.

S


S is REAL array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The sines s(k) of the plane rotations. The 2-by-2 plane
rotation part of the matrix P(k), R(k), has the form
R(k) = ( c(k) s(k) )
( -s(k) c(k) ).

A


A is REAL array, dimension (LDA,N)
The M-by-N matrix A. On exit, A is overwritten by P*A if
SIDE = 'R' or by A*P**T if SIDE = 'L'.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 198 of file slasr.f.

ZLASR applies a sequence of plane rotations to a general rectangular matrix.

Purpose:


ZLASR applies a sequence of real plane rotations to a complex matrix
A, from either the left or the right.
When SIDE = 'L', the transformation takes the form
A := P*A
and when SIDE = 'R', the transformation takes the form
A := A*P**T
where P is an orthogonal matrix consisting of a sequence of z plane
rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
and P**T is the transpose of P.
When DIRECT = 'F' (Forward sequence), then
P = P(z-1) * ... * P(2) * P(1)
and when DIRECT = 'B' (Backward sequence), then
P = P(1) * P(2) * ... * P(z-1)
where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
R(k) = ( c(k) s(k) )
= ( -s(k) c(k) ).
When PIVOT = 'V' (Variable pivot), the rotation is performed
for the plane (k,k+1), i.e., P(k) has the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears as a rank-2 modification to the identity matrix in
rows and columns k and k+1.
When PIVOT = 'T' (Top pivot), the rotation is performed for the
plane (1,k+1), so P(k) has the form
P(k) = ( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears in rows and columns 1 and k+1.
Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
performed for the plane (k,z), giving P(k) the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
where R(k) appears in rows and columns k and z. The rotations are
performed without ever forming P(k) explicitly.

Parameters

SIDE


SIDE is CHARACTER*1
Specifies whether the plane rotation matrix P is applied to
A on the left or the right.
= 'L': Left, compute A := P*A
= 'R': Right, compute A:= A*P**T

PIVOT


PIVOT is CHARACTER*1
Specifies the plane for which P(k) is a plane rotation
matrix.
= 'V': Variable pivot, the plane (k,k+1)
= 'T': Top pivot, the plane (1,k+1)
= 'B': Bottom pivot, the plane (k,z)

DIRECT


DIRECT is CHARACTER*1
Specifies whether P is a forward or backward sequence of
plane rotations.
= 'F': Forward, P = P(z-1)*...*P(2)*P(1)
= 'B': Backward, P = P(1)*P(2)*...*P(z-1)

M


M is INTEGER
The number of rows of the matrix A. If m <= 1, an immediate
return is effected.

N


N is INTEGER
The number of columns of the matrix A. If n <= 1, an
immediate return is effected.

C


C is DOUBLE PRECISION array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The cosines c(k) of the plane rotations.

S


S is DOUBLE PRECISION array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
The sines s(k) of the plane rotations. The 2-by-2 plane
rotation part of the matrix P(k), R(k), has the form
R(k) = ( c(k) s(k) )
( -s(k) c(k) ).

A


A is COMPLEX*16 array, dimension (LDA,N)
The M-by-N matrix A. On exit, A is overwritten by P*A if
SIDE = 'R' or by A*P**T if SIDE = 'L'.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 199 of file zlasr.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:37 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.