GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
pbtrs(3) LAPACK pbtrs(3)

pbtrs - pbtrs: triangular solve using factor


subroutine cpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
CPBTRS subroutine dpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
DPBTRS subroutine spbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
SPBTRS subroutine zpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
ZPBTRS

CPBTRS

Purpose:


CPBTRS solves a system of linear equations A*X = B with a Hermitian
positive definite band matrix A using the Cholesky factorization
A = U**H*U or A = L*L**H computed by CPBTRF.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangular factor stored in AB;
= 'L': Lower triangular factor stored in AB.

N


N is INTEGER
The order of the matrix A. N >= 0.

KD


KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

AB


AB is COMPLEX array, dimension (LDAB,N)
The triangular factor U or L from the Cholesky factorization
A = U**H*U or A = L*L**H of the band matrix A, stored in the
first KD+1 rows of the array. The j-th column of U or L is
stored in the j-th column of the array AB as follows:
if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.

B


B is COMPLEX array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 120 of file cpbtrs.f.

DPBTRS

Purpose:


DPBTRS solves a system of linear equations A*X = B with a symmetric
positive definite band matrix A using the Cholesky factorization
A = U**T*U or A = L*L**T computed by DPBTRF.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangular factor stored in AB;
= 'L': Lower triangular factor stored in AB.

N


N is INTEGER
The order of the matrix A. N >= 0.

KD


KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

AB


AB is DOUBLE PRECISION array, dimension (LDAB,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T of the band matrix A, stored in the
first KD+1 rows of the array. The j-th column of U or L is
stored in the j-th column of the array AB as follows:
if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.

B


B is DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 120 of file dpbtrs.f.

SPBTRS

Purpose:


SPBTRS solves a system of linear equations A*X = B with a symmetric
positive definite band matrix A using the Cholesky factorization
A = U**T*U or A = L*L**T computed by SPBTRF.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangular factor stored in AB;
= 'L': Lower triangular factor stored in AB.

N


N is INTEGER
The order of the matrix A. N >= 0.

KD


KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

AB


AB is REAL array, dimension (LDAB,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T of the band matrix A, stored in the
first KD+1 rows of the array. The j-th column of U or L is
stored in the j-th column of the array AB as follows:
if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.

B


B is REAL array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 120 of file spbtrs.f.

ZPBTRS

Purpose:


ZPBTRS solves a system of linear equations A*X = B with a Hermitian
positive definite band matrix A using the Cholesky factorization
A = U**H *U or A = L*L**H computed by ZPBTRF.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangular factor stored in AB;
= 'L': Lower triangular factor stored in AB.

N


N is INTEGER
The order of the matrix A. N >= 0.

KD


KD is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KD >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

AB


AB is COMPLEX*16 array, dimension (LDAB,N)
The triangular factor U or L from the Cholesky factorization
A = U**H *U or A = L*L**H of the band matrix A, stored in the
first KD+1 rows of the array. The j-th column of U or L is
stored in the j-th column of the array AB as follows:
if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).

LDAB


LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KD+1.

B


B is COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 120 of file zpbtrs.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:36 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.