GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
potf2(3) LAPACK potf2(3)

potf2 - potf2: triangular factor panel, level 2


subroutine cpotf2 (uplo, n, a, lda, info)
CPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm). subroutine dpotf2 (uplo, n, a, lda, info)
DPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm). subroutine spotf2 (uplo, n, a, lda, info)
SPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm). subroutine zpotf2 (uplo, n, a, lda, info)
ZPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).

CPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).

Purpose:


CPOTF2 computes the Cholesky factorization of a complex Hermitian
positive definite matrix A.
The factorization has the form
A = U**H * U , if UPLO = 'U', or
A = L * L**H, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
Hermitian matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the Hermitian matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**H *U or A = L*L**H.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading principal minor of order k
is not positive, and the factorization could not be
completed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file cpotf2.f.

DPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).

Purpose:


DPOTF2 computes the Cholesky factorization of a real symmetric
positive definite matrix A.
The factorization has the form
A = U**T * U , if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T *U or A = L*L**T.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading principal minor of order k
is not positive, and the factorization could not be
completed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file dpotf2.f.

SPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).

Purpose:


SPOTF2 computes the Cholesky factorization of a real symmetric
positive definite matrix A.
The factorization has the form
A = U**T * U , if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T *U or A = L*L**T.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading principal minor of order k
is not positive, and the factorization could not be
completed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file spotf2.f.

ZPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).

Purpose:


ZPOTF2 computes the Cholesky factorization of a complex Hermitian
positive definite matrix A.
The factorization has the form
A = U**H * U , if UPLO = 'U', or
A = L * L**H, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the upper or lower triangular part of the
Hermitian matrix A is stored.
= 'U': Upper triangular
= 'L': Lower triangular

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the Hermitian matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**H *U or A = L*L**H.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading principal minor of order k
is not positive, and the factorization could not be
completed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file zpotf2.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:36 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.