 |
|
| |
ppcon - ppcon: condition number estimate
subroutine cppcon (uplo, n, ap, anorm, rcond, work, rwork,
info)
CPPCON subroutine dppcon (uplo, n, ap, anorm, rcond, work,
iwork, info)
DPPCON subroutine sppcon (uplo, n, ap, anorm, rcond, work,
iwork, info)
SPPCON subroutine zppcon (uplo, n, ap, anorm, rcond, work,
rwork, info)
ZPPCON
CPPCON
Purpose:
CPPCON estimates the reciprocal of the condition number (in the
1-norm) of a complex Hermitian positive definite packed matrix using
the Cholesky factorization A = U**H*U or A = L*L**H computed by
CPPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Parameters
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
AP
AP is COMPLEX array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**H*U or A = L*L**H, packed columnwise in a linear
array. The j-th column of U or L is stored in the array AP
as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
ANORM
ANORM is REAL
The 1-norm (or infinity-norm) of the Hermitian matrix A.
RCOND
RCOND is REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK
WORK is COMPLEX array, dimension (2*N)
RWORK
RWORK is REAL array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 117 of file cppcon.f.
DPPCON
Purpose:
DPPCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite packed matrix using
the Cholesky factorization A = U**T*U or A = L*L**T computed by
DPPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Parameters
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
AP
AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, packed columnwise in a linear
array. The j-th column of U or L is stored in the array AP
as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
ANORM
ANORM is DOUBLE PRECISION
The 1-norm (or infinity-norm) of the symmetric matrix A.
RCOND
RCOND is DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK
WORK is DOUBLE PRECISION array, dimension (3*N)
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 117 of file dppcon.f.
SPPCON
Purpose:
SPPCON estimates the reciprocal of the condition number (in the
1-norm) of a real symmetric positive definite packed matrix using
the Cholesky factorization A = U**T*U or A = L*L**T computed by
SPPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Parameters
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
AP
AP is REAL array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, packed columnwise in a linear
array. The j-th column of U or L is stored in the array AP
as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
ANORM
ANORM is REAL
The 1-norm (or infinity-norm) of the symmetric matrix A.
RCOND
RCOND is REAL
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK
WORK is REAL array, dimension (3*N)
IWORK
IWORK is INTEGER array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 117 of file sppcon.f.
ZPPCON
Purpose:
ZPPCON estimates the reciprocal of the condition number (in the
1-norm) of a complex Hermitian positive definite packed matrix using
the Cholesky factorization A = U**H*U or A = L*L**H computed by
ZPPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Parameters
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
AP
AP is COMPLEX*16 array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization
A = U**H*U or A = L*L**H, packed columnwise in a linear
array. The j-th column of U or L is stored in the array AP
as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
ANORM
ANORM is DOUBLE PRECISION
The 1-norm (or infinity-norm) of the Hermitian matrix A.
RCOND
RCOND is DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
estimate of the 1-norm of inv(A) computed in this routine.
WORK
WORK is COMPLEX*16 array, dimension (2*N)
RWORK
RWORK is DOUBLE PRECISION array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 117 of file zppcon.f.
Generated automatically by Doxygen for LAPACK from the source
code.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|