 |
|
| |
pptrf - pptrf: triangular factor
subroutine cpptrf (uplo, n, ap, info)
CPPTRF subroutine dpptrf (uplo, n, ap, info)
DPPTRF subroutine spptrf (uplo, n, ap, info)
SPPTRF subroutine zpptrf (uplo, n, ap, info)
ZPPTRF
CPPTRF
Purpose:
CPPTRF computes the Cholesky factorization of a complex Hermitian
positive definite matrix A stored in packed format.
The factorization has the form
A = U**H * U, if UPLO = 'U', or
A = L * L**H, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
Parameters
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
AP
AP is COMPLEX array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**H*U or A = L*L**H, in the same
storage format as A.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading principal minor of order i
is not positive definite, and the factorization could
not be completed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the Hermitian matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
Definition at line 118 of file cpptrf.f.
DPPTRF
Purpose:
DPPTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A stored in packed format.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
Parameters
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
AP
AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T, in the same
storage format as A.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading principal minor of order i
is not positive, and the factorization could not be
completed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
Definition at line 118 of file dpptrf.f.
SPPTRF
Purpose:
SPPTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A stored in packed format.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
Parameters
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
AP
AP is REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T, in the same
storage format as A.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading principal minor of order i
is not positive, and the factorization could not be
completed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
Definition at line 118 of file spptrf.f.
ZPPTRF
Purpose:
ZPPTRF computes the Cholesky factorization of a complex Hermitian
positive definite matrix A stored in packed format.
The factorization has the form
A = U**H * U, if UPLO = 'U', or
A = L * L**H, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
Parameters
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
AP
AP is COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**H*U or A = L*L**H, in the same
storage format as A.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading principal minor of order i
is not positive, and the factorization could not be
completed.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the Hermitian matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
Definition at line 118 of file zpptrf.f.
Generated automatically by Doxygen for LAPACK from the source
code.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|