GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
ptrfs(3) LAPACK ptrfs(3)

ptrfs - ptrfs: iterative refinement


subroutine cptrfs (uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CPTRFS subroutine dptrfs (n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, info)
DPTRFS subroutine sptrfs (n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, info)
SPTRFS subroutine zptrfs (uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZPTRFS

CPTRFS

Purpose:


CPTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is Hermitian positive definite
and tridiagonal, and provides error bounds and backward error
estimates for the solution.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the superdiagonal or the subdiagonal of the
tridiagonal matrix A is stored and the form of the
factorization:
= 'U': E is the superdiagonal of A, and A = U**H*D*U;
= 'L': E is the subdiagonal of A, and A = L*D*L**H.
(The two forms are equivalent if A is real.)

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

D


D is REAL array, dimension (N)
The n real diagonal elements of the tridiagonal matrix A.

E


E is COMPLEX array, dimension (N-1)
The (n-1) off-diagonal elements of the tridiagonal matrix A
(see UPLO).

DF


DF is REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D from
the factorization computed by CPTTRF.

EF


EF is COMPLEX array, dimension (N-1)
The (n-1) off-diagonal elements of the unit bidiagonal
factor U or L from the factorization computed by CPTTRF
(see UPLO).

B


B is COMPLEX array, dimension (LDB,NRHS)
The right hand side matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

X


X is COMPLEX array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by CPTTRS.
On exit, the improved solution matrix X.

LDX


LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).

FERR


FERR is REAL array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).

BERR


BERR is REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

WORK


WORK is COMPLEX array, dimension (N)

RWORK


RWORK is REAL array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Internal Parameters:


ITMAX is the maximum number of steps of iterative refinement.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 181 of file cptrfs.f.

DPTRFS

Purpose:


DPTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and tridiagonal, and provides error bounds and backward error
estimates for the solution.

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

D


D is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.

E


E is DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix A.

DF


DF is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
factorization computed by DPTTRF.

EF


EF is DOUBLE PRECISION array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the factorization computed by DPTTRF.

B


B is DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

X


X is DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DPTTRS.
On exit, the improved solution matrix X.

LDX


LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).

FERR


FERR is DOUBLE PRECISION array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).

BERR


BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

WORK


WORK is DOUBLE PRECISION array, dimension (2*N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Internal Parameters:


ITMAX is the maximum number of steps of iterative refinement.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 161 of file dptrfs.f.

SPTRFS

Purpose:


SPTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite
and tridiagonal, and provides error bounds and backward error
estimates for the solution.

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

D


D is REAL array, dimension (N)
The n diagonal elements of the tridiagonal matrix A.

E


E is REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the tridiagonal matrix A.

DF


DF is REAL array, dimension (N)
The n diagonal elements of the diagonal matrix D from the
factorization computed by SPTTRF.

EF


EF is REAL array, dimension (N-1)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the factorization computed by SPTTRF.

B


B is REAL array, dimension (LDB,NRHS)
The right hand side matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

X


X is REAL array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by SPTTRS.
On exit, the improved solution matrix X.

LDX


LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).

FERR


FERR is REAL array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).

BERR


BERR is REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

WORK


WORK is REAL array, dimension (2*N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Internal Parameters:


ITMAX is the maximum number of steps of iterative refinement.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 161 of file sptrfs.f.

ZPTRFS

Purpose:


ZPTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is Hermitian positive definite
and tridiagonal, and provides error bounds and backward error
estimates for the solution.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the superdiagonal or the subdiagonal of the
tridiagonal matrix A is stored and the form of the
factorization:
= 'U': E is the superdiagonal of A, and A = U**H*D*U;
= 'L': E is the subdiagonal of A, and A = L*D*L**H.
(The two forms are equivalent if A is real.)

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.

D


D is DOUBLE PRECISION array, dimension (N)
The n real diagonal elements of the tridiagonal matrix A.

E


E is COMPLEX*16 array, dimension (N-1)
The (n-1) off-diagonal elements of the tridiagonal matrix A
(see UPLO).

DF


DF is DOUBLE PRECISION array, dimension (N)
The n diagonal elements of the diagonal matrix D from
the factorization computed by ZPTTRF.

EF


EF is COMPLEX*16 array, dimension (N-1)
The (n-1) off-diagonal elements of the unit bidiagonal
factor U or L from the factorization computed by ZPTTRF
(see UPLO).

B


B is COMPLEX*16 array, dimension (LDB,NRHS)
The right hand side matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

X


X is COMPLEX*16 array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by ZPTTRS.
On exit, the improved solution matrix X.

LDX


LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).

FERR


FERR is DOUBLE PRECISION array, dimension (NRHS)
The forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j).

BERR


BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

WORK


WORK is COMPLEX*16 array, dimension (N)

RWORK


RWORK is DOUBLE PRECISION array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Internal Parameters:


ITMAX is the maximum number of steps of iterative refinement.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 181 of file zptrfs.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:36 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.