GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
SRC/sgelst.f(3) LAPACK SRC/sgelst.f(3)

SRC/sgelst.f


subroutine sgelst (trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
SGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.

SGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factorization with compact WY representation of Q.

Purpose:


SGELST solves overdetermined or underdetermined real linear systems
involving an M-by-N matrix A, or its transpose, using a QR or LQ
factorization of A with compact WY representation of Q.
It is assumed that A has full rank.
The following options are provided:
1. If TRANS = 'N' and m >= n: find the least squares solution of
an overdetermined system, i.e., solve the least squares problem
minimize || B - A*X ||.
2. If TRANS = 'N' and m < n: find the minimum norm solution of
an underdetermined system A * X = B.
3. If TRANS = 'T' and m >= n: find the minimum norm solution of
an underdetermined system A**T * X = B.
4. If TRANS = 'T' and m < n: find the least squares solution of
an overdetermined system, i.e., solve the least squares problem
minimize || B - A**T * X ||.
Several right hand side vectors b and solution vectors x can be
handled in a single call; they are stored as the columns of the
M-by-NRHS right hand side matrix B and the N-by-NRHS solution
matrix X.

Parameters

TRANS


TRANS is CHARACTER*1
= 'N': the linear system involves A;
= 'T': the linear system involves A**T.

M


M is INTEGER
The number of rows of the matrix A. M >= 0.

N


N is INTEGER
The number of columns of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of
columns of the matrices B and X. NRHS >=0.

A


A is REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if M >= N, A is overwritten by details of its QR
factorization as returned by SGEQRT;
if M < N, A is overwritten by details of its LQ
factorization as returned by SGELQT.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

B


B is REAL array, dimension (LDB,NRHS)
On entry, the matrix B of right hand side vectors, stored
columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
if TRANS = 'T'.
On exit, if INFO = 0, B is overwritten by the solution
vectors, stored columnwise:
if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
squares solution vectors; the residual sum of squares for the
solution in each column is given by the sum of squares of
elements N+1 to M in that column;
if TRANS = 'N' and m < n, rows 1 to N of B contain the
minimum norm solution vectors;
if TRANS = 'T' and m >= n, rows 1 to M of B contain the
minimum norm solution vectors;
if TRANS = 'T' and m < n, rows 1 to M of B contain the
least squares solution vectors; the residual sum of squares
for the solution in each column is given by the sum of
squares of elements M+1 to N in that column.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= MAX(1,M,N).

WORK


WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
LWORK >= max( 1, MN + max( MN, NRHS ) ).
For optimal performance,
LWORK >= max( 1, (MN + max( MN, NRHS ))*NB ).
where MN = min(M,N) and NB is the optimum block size.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of the
triangular factor of A is zero, so that A does not have
full rank; the least squares solution could not be
computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


November 2022, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley

Definition at line 192 of file sgelst.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:31 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.