TRANSA
TRANSA is CHARACTER*1
On entry, TRANSA specifies the form of op( A ) to be used in
the matrix multiplication as follows:
TRANSA = 'N' or 'n', op( A ) = A.
TRANSA = 'T' or 't', op( A ) = A**T.
TRANSA = 'C' or 'c', op( A ) = A**T.
TRANSB
TRANSB is CHARACTER*1
On entry, TRANSB specifies the form of op( B ) to be used in
the matrix multiplication as follows:
TRANSB = 'N' or 'n', op( B ) = B.
TRANSB = 'T' or 't', op( B ) = B**T.
TRANSB = 'C' or 'c', op( B ) = B**T.
M
M is INTEGER
On entry, M specifies the number of rows of the matrix
op( A ) and of the matrix C. M must be at least zero.
N
N is INTEGER
On entry, N specifies the number of columns of the matrix
op( B ) and the number of columns of the matrix C. N must be
at least zero.
K
K is INTEGER
On entry, K specifies the number of columns of the matrix
op( A ) and the number of rows of the matrix op( B ). K must
be at least zero.
ALPHA
ALPHA is REAL
On entry, ALPHA specifies the scalar alpha.
A
A is REAL array, dimension ( LDA, ka ), where ka is
k when TRANSA = 'N' or 'n', and is m otherwise.
Before entry with TRANSA = 'N' or 'n', the leading m by k
part of the array A must contain the matrix A, otherwise
the leading k by m part of the array A must contain the
matrix A.
LDA
LDA is INTEGER
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. When TRANSA = 'N' or 'n' then
LDA must be at least max( 1, m ), otherwise LDA must be at
least max( 1, k ).
B
B is REAL array, dimension ( LDB, kb ), where kb is
n when TRANSB = 'N' or 'n', and is k otherwise.
Before entry with TRANSB = 'N' or 'n', the leading k by n
part of the array B must contain the matrix B, otherwise
the leading n by k part of the array B must contain the
matrix B.
LDB
LDB is INTEGER
On entry, LDB specifies the first dimension of B as declared
in the calling (sub) program. When TRANSB = 'N' or 'n' then
LDB must be at least max( 1, k ), otherwise LDB must be at
least max( 1, n ).
BETA
BETA is REAL
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then C need not be set on input.
C
C is REAL array, dimension ( LDC, N )
Before entry, the leading m by n part of the array C must
contain the matrix C, except when beta is zero, in which
case C need not be set on entry.
On exit, the array C is overwritten by the m by n matrix
( alpha*op( A )*op( B ) + beta*C ).
LDC
LDC is INTEGER
On entry, LDC specifies the first dimension of C as declared
in the calling (sub) program. LDC must be at least
max( 1, m ).