GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
SRC/sgesvdx.f(3) LAPACK SRC/sgesvdx.f(3)

SRC/sgesvdx.f


subroutine sgesvdx (jobu, jobvt, range, m, n, a, lda, vl, vu, il, iu, ns, s, u, ldu, vt, ldvt, work, lwork, iwork, info)
SGESVDX computes the singular value decomposition (SVD) for GE matrices

SGESVDX computes the singular value decomposition (SVD) for GE matrices

Purpose:


SGESVDX computes the singular value decomposition (SVD) of a real
M-by-N matrix A, optionally computing the left and/or right singular
vectors. The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its
min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
are the singular values of A; they are real and non-negative, and
are returned in descending order. The first min(m,n) columns of
U and V are the left and right singular vectors of A.
SGESVDX uses an eigenvalue problem for obtaining the SVD, which
allows for the computation of a subset of singular values and
vectors. See SBDSVDX for details.
Note that the routine returns V**T, not V.

Parameters

JOBU


JOBU is CHARACTER*1
Specifies options for computing all or part of the matrix U:
= 'V': the first min(m,n) columns of U (the left singular
vectors) or as specified by RANGE are returned in
the array U;
= 'N': no columns of U (no left singular vectors) are
computed.

JOBVT


JOBVT is CHARACTER*1
Specifies options for computing all or part of the matrix
V**T:
= 'V': the first min(m,n) rows of V**T (the right singular
vectors) or as specified by RANGE are returned in
the array VT;
= 'N': no rows of V**T (no right singular vectors) are
computed.

RANGE


RANGE is CHARACTER*1
= 'A': all singular values will be found.
= 'V': all singular values in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th singular values will be found.

M


M is INTEGER
The number of rows of the input matrix A. M >= 0.

N


N is INTEGER
The number of columns of the input matrix A. N >= 0.

A


A is REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the contents of A are destroyed.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

VL


VL is REAL
If RANGE='V', the lower bound of the interval to
be searched for singular values. VU > VL.
Not referenced if RANGE = 'A' or 'I'.

VU


VU is REAL
If RANGE='V', the upper bound of the interval to
be searched for singular values. VU > VL.
Not referenced if RANGE = 'A' or 'I'.

IL


IL is INTEGER
If RANGE='I', the index of the
smallest singular value to be returned.
1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
Not referenced if RANGE = 'A' or 'V'.

IU


IU is INTEGER
If RANGE='I', the index of the
largest singular value to be returned.
1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
Not referenced if RANGE = 'A' or 'V'.

NS


NS is INTEGER
The total number of singular values found,
0 <= NS <= min(M,N).
If RANGE = 'A', NS = min(M,N); if RANGE = 'I', NS = IU-IL+1.

S


S is REAL array, dimension (min(M,N))
The singular values of A, sorted so that S(i) >= S(i+1).

U


U is REAL array, dimension (LDU,UCOL)
If JOBU = 'V', U contains columns of U (the left singular
vectors, stored columnwise) as specified by RANGE; if
JOBU = 'N', U is not referenced.
Note: The user must ensure that UCOL >= NS; if RANGE = 'V',
the exact value of NS is not known in advance and an upper
bound must be used.

LDU


LDU is INTEGER
The leading dimension of the array U. LDU >= 1; if
JOBU = 'V', LDU >= M.

VT


VT is REAL array, dimension (LDVT,N)
If JOBVT = 'V', VT contains the rows of V**T (the right singular
vectors, stored rowwise) as specified by RANGE; if JOBVT = 'N',
VT is not referenced.
Note: The user must ensure that LDVT >= NS; if RANGE = 'V',
the exact value of NS is not known in advance and an upper
bound must be used.

LDVT


LDVT is INTEGER
The leading dimension of the array VT. LDVT >= 1; if
JOBVT = 'V', LDVT >= NS (see above).

WORK


WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK;

LWORK


LWORK is INTEGER
The dimension of the array WORK.
LWORK >= MAX(1,MIN(M,N)*(MIN(M,N)+4)) for the paths (see
comments inside the code):
- PATH 1 (M much larger than N)
- PATH 1t (N much larger than M)
LWORK >= MAX(1,MIN(M,N)*2+MAX(M,N)) for the other paths.
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

IWORK


IWORK is INTEGER array, dimension (12*MIN(M,N))
If INFO = 0, the first NS elements of IWORK are zero. If INFO > 0,
then IWORK contains the indices of the eigenvectors that failed
to converge in SBDSVDX/SSTEVX.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge
in SBDSVDX/SSTEVX.
if INFO = N*2 + 1, an internal error occurred in
SBDSVDX

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 260 of file sgesvdx.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:31 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.