JOBU
JOBU is CHARACTER*1
Specifies options for computing all or part of the matrix U:
= 'V': the first min(m,n) columns of U (the left singular
vectors) or as specified by RANGE are returned in
the array U;
= 'N': no columns of U (no left singular vectors) are
computed.
JOBVT
JOBVT is CHARACTER*1
Specifies options for computing all or part of the matrix
V**T:
= 'V': the first min(m,n) rows of V**T (the right singular
vectors) or as specified by RANGE are returned in
the array VT;
= 'N': no rows of V**T (no right singular vectors) are
computed.
RANGE
RANGE is CHARACTER*1
= 'A': all singular values will be found.
= 'V': all singular values in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th singular values will be found.
M
M is INTEGER
The number of rows of the input matrix A. M >= 0.
N
N is INTEGER
The number of columns of the input matrix A. N >= 0.
A
A is REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the contents of A are destroyed.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
VL
VL is REAL
If RANGE='V', the lower bound of the interval to
be searched for singular values. VU > VL.
Not referenced if RANGE = 'A' or 'I'.
VU
VU is REAL
If RANGE='V', the upper bound of the interval to
be searched for singular values. VU > VL.
Not referenced if RANGE = 'A' or 'I'.
IL
IL is INTEGER
If RANGE='I', the index of the
smallest singular value to be returned.
1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
Not referenced if RANGE = 'A' or 'V'.
IU
IU is INTEGER
If RANGE='I', the index of the
largest singular value to be returned.
1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
Not referenced if RANGE = 'A' or 'V'.
NS
NS is INTEGER
The total number of singular values found,
0 <= NS <= min(M,N).
If RANGE = 'A', NS = min(M,N); if RANGE = 'I', NS = IU-IL+1.
S
S is REAL array, dimension (min(M,N))
The singular values of A, sorted so that S(i) >= S(i+1).
U
U is REAL array, dimension (LDU,UCOL)
If JOBU = 'V', U contains columns of U (the left singular
vectors, stored columnwise) as specified by RANGE; if
JOBU = 'N', U is not referenced.
Note: The user must ensure that UCOL >= NS; if RANGE = 'V',
the exact value of NS is not known in advance and an upper
bound must be used.
LDU
LDU is INTEGER
The leading dimension of the array U. LDU >= 1; if
JOBU = 'V', LDU >= M.
VT
VT is REAL array, dimension (LDVT,N)
If JOBVT = 'V', VT contains the rows of V**T (the right singular
vectors, stored rowwise) as specified by RANGE; if JOBVT = 'N',
VT is not referenced.
Note: The user must ensure that LDVT >= NS; if RANGE = 'V',
the exact value of NS is not known in advance and an upper
bound must be used.
LDVT
LDVT is INTEGER
The leading dimension of the array VT. LDVT >= 1; if
JOBVT = 'V', LDVT >= NS (see above).
WORK
WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
LWORK
LWORK is INTEGER
The dimension of the array WORK.
LWORK >= MAX(1,MIN(M,N)*(MIN(M,N)+4)) for the paths (see
comments inside the code):
- PATH 1 (M much larger than N)
- PATH 1t (N much larger than M)
LWORK >= MAX(1,MIN(M,N)*2+MAX(M,N)) for the other paths.
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (12*MIN(M,N))
If INFO = 0, the first NS elements of IWORK are zero. If INFO > 0,
then IWORK contains the indices of the eigenvectors that failed
to converge in SBDSVDX/SSTEVX.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge
in SBDSVDX/SSTEVX.
if INFO = N*2 + 1, an internal error occurred in
SBDSVDX