GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
SRC/slahqr.f(3) LAPACK SRC/slahqr.f(3)

SRC/slahqr.f


subroutine slahqr (wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, info)
SLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm.

SLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm.

Purpose:


SLAHQR is an auxiliary routine called by SHSEQR to update the
eigenvalues and Schur decomposition already computed by SHSEQR, by
dealing with the Hessenberg submatrix in rows and columns ILO to
IHI.

Parameters

WANTT


WANTT is LOGICAL
= .TRUE. : the full Schur form T is required;
= .FALSE.: only eigenvalues are required.

WANTZ


WANTZ is LOGICAL
= .TRUE. : the matrix of Schur vectors Z is required;
= .FALSE.: Schur vectors are not required.

N


N is INTEGER
The order of the matrix H. N >= 0.

ILO


ILO is INTEGER

IHI


IHI is INTEGER
It is assumed that H is already upper quasi-triangular in
rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
ILO = 1). SLAHQR works primarily with the Hessenberg
submatrix in rows and columns ILO to IHI, but applies
transformations to all of H if WANTT is .TRUE..
1 <= ILO <= max(1,IHI); IHI <= N.

H


H is REAL array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if INFO is zero and if WANTT is .TRUE., H is upper
quasi-triangular in rows and columns ILO:IHI, with any
2-by-2 diagonal blocks in standard form. If INFO is zero
and WANTT is .FALSE., the contents of H are unspecified on
exit. The output state of H if INFO is nonzero is given
below under the description of INFO.

LDH


LDH is INTEGER
The leading dimension of the array H. LDH >= max(1,N).

WR


WR is REAL array, dimension (N)

WI


WI is REAL array, dimension (N)
The real and imaginary parts, respectively, of the computed
eigenvalues ILO to IHI are stored in the corresponding
elements of WR and WI. If two eigenvalues are computed as a
complex conjugate pair, they are stored in consecutive
elements of WR and WI, say the i-th and (i+1)th, with
WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
eigenvalues are stored in the same order as on the diagonal
of the Schur form returned in H, with WR(i) = H(i,i), and, if
H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).

ILOZ


ILOZ is INTEGER

IHIZ


IHIZ is INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE..
1 <= ILOZ <= ILO; IHI <= IHIZ <= N.

Z


Z is REAL array, dimension (LDZ,N)
If WANTZ is .TRUE., on entry Z must contain the current
matrix Z of transformations accumulated by SHSEQR, and on
exit Z has been updated; transformations are applied only to
the submatrix Z(ILOZ:IHIZ,ILO:IHI).
If WANTZ is .FALSE., Z is not referenced.

LDZ


LDZ is INTEGER
The leading dimension of the array Z. LDZ >= max(1,N).

INFO


INFO is INTEGER
= 0: successful exit
> 0: If INFO = i, SLAHQR failed to compute all the
eigenvalues ILO to IHI in a total of 30 iterations
per eigenvalue; elements i+1:ihi of WR and WI
contain those eigenvalues which have been
successfully computed.
If INFO > 0 and WANTT is .FALSE., then on exit,
the remaining unconverged eigenvalues are the
eigenvalues of the upper Hessenberg matrix rows
and columns ILO through INFO of the final, output
value of H.
If INFO > 0 and WANTT is .TRUE., then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is an orthogonal matrix. The final
value of H is upper Hessenberg and triangular in
rows and columns INFO+1 through IHI.
If INFO > 0 and WANTZ is .TRUE., then on exit
(final value of Z) = (initial value of Z)*U
where U is the orthogonal matrix in (*)
(regardless of the value of WANTT.)

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


02-96 Based on modifications by
David Day, Sandia National Laboratory, USA
12-04 Further modifications by
Ralph Byers, University of Kansas, USA
This is a modified version of SLAHQR from LAPACK version 3.0.
It is (1) more robust against overflow and underflow and
(2) adopts the more conservative Ahues & Tisseur stopping
criterion (LAWN 122, 1997).

Definition at line 205 of file slahqr.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:31 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.