ICOMPQ
ICOMPQ is INTEGER
Specifies whether singular vectors are to be computed in
factored form:
= 0: Compute singular values only.
= 1: Compute singular vectors in factored form as well.
NL
NL is INTEGER
The row dimension of the upper block. NL >= 1.
NR
NR is INTEGER
The row dimension of the lower block. NR >= 1.
SQRE
SQRE is INTEGER
= 0: the lower block is an NR-by-NR square matrix.
= 1: the lower block is an NR-by-(NR+1) rectangular matrix.
The bidiagonal matrix has row dimension N = NL + NR + 1,
and column dimension M = N + SQRE.
D
D is REAL array, dimension (NL+NR+1).
On entry D(1:NL,1:NL) contains the singular values of the
upper block, and D(NL+2:N) contains the singular values
of the lower block. On exit D(1:N) contains the singular
values of the modified matrix.
VF
VF is REAL array, dimension (M)
On entry, VF(1:NL+1) contains the first components of all
right singular vectors of the upper block; and VF(NL+2:M)
contains the first components of all right singular vectors
of the lower block. On exit, VF contains the first components
of all right singular vectors of the bidiagonal matrix.
VL
VL is REAL array, dimension (M)
On entry, VL(1:NL+1) contains the last components of all
right singular vectors of the upper block; and VL(NL+2:M)
contains the last components of all right singular vectors of
the lower block. On exit, VL contains the last components of
all right singular vectors of the bidiagonal matrix.
ALPHA
ALPHA is REAL
Contains the diagonal element associated with the added row.
BETA
BETA is REAL
Contains the off-diagonal element associated with the added
row.
IDXQ
IDXQ is INTEGER array, dimension (N)
This contains the permutation which will reintegrate the
subproblem just solved back into sorted order, i.e.
D( IDXQ( I = 1, N ) ) will be in ascending order.
PERM
PERM is INTEGER array, dimension ( N )
The permutations (from deflation and sorting) to be applied
to each block. Not referenced if ICOMPQ = 0.
GIVPTR
GIVPTR is INTEGER
The number of Givens rotations which took place in this
subproblem. Not referenced if ICOMPQ = 0.
GIVCOL
GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation. Not referenced if ICOMPQ = 0.
LDGCOL
LDGCOL is INTEGER
leading dimension of GIVCOL, must be at least N.
GIVNUM
GIVNUM is REAL array, dimension ( LDGNUM, 2 )
Each number indicates the C or S value to be used in the
corresponding Givens rotation. Not referenced if ICOMPQ = 0.
LDGNUM
LDGNUM is INTEGER
The leading dimension of GIVNUM and POLES, must be at least N.
POLES
POLES is REAL array, dimension ( LDGNUM, 2 )
On exit, POLES(1,*) is an array containing the new singular
values obtained from solving the secular equation, and
POLES(2,*) is an array containing the poles in the secular
equation. Not referenced if ICOMPQ = 0.
DIFL
DIFL is REAL array, dimension ( N )
On exit, DIFL(I) is the distance between I-th updated
(undeflated) singular value and the I-th (undeflated) old
singular value.
DIFR
DIFR is REAL array,
dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
dimension ( K ) if ICOMPQ = 0.
On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
defined and will not be referenced.
If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
normalizing factors for the right singular vector matrix.
See SLASD8 for details on DIFL and DIFR.
Z
Z is REAL array, dimension ( M )
The first elements of this array contain the components
of the deflation-adjusted updating row vector.
K
K is INTEGER
Contains the dimension of the non-deflated matrix,
This is the order of the related secular equation. 1 <= K <=N.
C
C is REAL
C contains garbage if SQRE =0 and the C-value of a Givens
rotation related to the right null space if SQRE = 1.
S
S is REAL
S contains garbage if SQRE =0 and the S-value of a Givens
rotation related to the right null space if SQRE = 1.
WORK
WORK is REAL array, dimension ( 4 * M )
IWORK
IWORK is INTEGER array, dimension ( 3 * N )
INFO
INFO is INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, a singular value did not converge
Ming Gu and Huan Ren, Computer Science Division,
University of California at Berkeley, USA