SIDE
SIDE is CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A contains elementary reflectors
from SSYTRD;
= 'L': Lower triangle of A contains elementary reflectors
from SSYTRD.
TRANS
TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M
M is INTEGER
The number of rows of the matrix C. M >= 0.
N
N is INTEGER
The number of columns of the matrix C. N >= 0.
A
A is REAL array, dimension
(LDA,M) if SIDE = 'L'
(LDA,N) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by SSYTRD.
LDA
LDA is INTEGER
The leading dimension of the array A.
LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU
TAU is REAL array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SSYTRD.
C
C is REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value