JOBZ
JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
N
N is INTEGER
The order of the matrix. N >= 0.
D
D is REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, if INFO = 0, the eigenvalues in ascending order.
E
E is REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A, stored in elements 1 to N-1 of E.
On exit, the contents of E are destroyed.
Z
Z is REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with D(i).
If JOBZ = 'N', then Z is not referenced.
LDZ
LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK
WORK is REAL array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER
The dimension of the array WORK.
If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.
If JOBZ = 'V' and N > 1 then LWORK must be at least
( 1 + 4*N + N**2 ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
LIWORK is INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.
If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of E did not converge to zero.