GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
SRC/ssygvd.f(3) LAPACK SRC/ssygvd.f(3)

SRC/ssygvd.f


subroutine ssygvd (itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, iwork, liwork, info)
SSYGVD

SSYGVD

Purpose:


SSYGVD computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
B are assumed to be symmetric and B is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

Parameters

ITYPE


ITYPE is INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x

JOBZ


JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.

N


N is INTEGER
The order of the matrices A and B. N >= 0.

A


A is REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
matrix Z of eigenvectors. The eigenvectors are normalized
as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
or the lower triangle (if UPLO='L') of A, including the
diagonal, is destroyed.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

B


B is REAL array, dimension (LDB, N)
On entry, the symmetric matrix B. If UPLO = 'U', the
leading N-by-N upper triangular part of B contains the
upper triangular part of the matrix B. If UPLO = 'L',
the leading N-by-N lower triangular part of B contains
the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

W


W is REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.

WORK


WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.

IWORK


IWORK is INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

LIWORK


LIWORK is INTEGER
The dimension of the array IWORK.
If N <= 1, LIWORK >= 1.
If JOBZ = 'N' and N > 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: SPOTRF or SSYEVD returned an error code:
<= N: if INFO = i and JOBZ = 'N', then the algorithm
failed to converge; i off-diagonal elements of an
intermediate tridiagonal form did not converge to
zero;
if INFO = i and JOBZ = 'V', then the algorithm
failed to compute an eigenvalue while working on
the submatrix lying in rows and columns INFO/(N+1)
through mod(INFO,N+1);
> N: if INFO = N + i, for 1 <= i <= N, then the leading
principal minor of order i of B is not positive.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


Modified so that no backsubstitution is performed if SSYEVD fails to
converge (NEIG in old code could be greater than N causing out of
bounds reference to A - reported by Ralf Meyer). Also corrected the
description of INFO and the test on ITYPE. Sven, 16 Feb 05.

Contributors:

Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Definition at line 219 of file ssygvd.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:32 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.