GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
std::assoc_legendre,std::assoc_legendref,std::assoc_legendrel(3) C++ Standard Libary std::assoc_legendre,std::assoc_legendref,std::assoc_legendrel(3)

std::assoc_legendre,std::assoc_legendref,std::assoc_legendrel - std::assoc_legendre,std::assoc_legendref,std::assoc_legendrel


Defined in header <cmath>
double assoc_legendre( unsigned int n, unsigned int m, double x );


float assoc_legendre( unsigned int n, unsigned int m, float x );
long double assoc_legendre( unsigned int n, unsigned int m, long
double x ); (1) (since C++17)
float assoc_legendref( unsigned int n, unsigned int m, float x );


long double assoc_legendrel( unsigned int n, unsigned int m, long
double x );
double assoc_legendre( unsigned int n, unsigned int m, (2) (since C++17)
IntegralType x );


1) Computes the associated Legendre polynomials of the degree n, order m, and
argument x
2) A set of overloads or a function template accepting an argument of any integral
type. Equivalent to (1) after casting the argument to double.


n - the degree of the polynomial, a value of unsigned integer type
m - the order of the polynomial, a value of unsigned integer type
x - the argument, a value of a floating-point or integral type


If no errors occur, value of the associated Legendre polynomial \(\mathsf{P}_n^m\)Pm
n of x, that is \((1 - x^2) ^ {m/2} \: \frac{ \mathsf{d} ^ m}{ \mathsf{d}x ^ m} \,
\mathsf{P}_n(x)\)(1-x2
)m/2


dm
dxm


P
n(x), is returned (where \(\mathsf{P}_n(x)\)P
n(x) is the unassociated Legendre polynomial, std::legendre(n, x)).


Note that the Condon-Shortley phase term \((-1)^m\)(-1)m
is omitted from this definition.


Errors may be reported as specified in math_errhandling


* If the argument is NaN, NaN is returned and domain error is not reported
* If |x| > 1, a domain error may occur
* If n is greater or equal to 128, the behavior is implementation-defined.


Implementations that do not support C++17, but support ISO 29124:2010, provide this
function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value
at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
including any standard library headers.


Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1),
provide this function in the header tr1/cmath and namespace std::tr1.


An implementation of this function is also available in boost.math as
boost::math::legendre_p, except that the boost.math definition includes the
Condon-Shortley phase term.


The first few associated Legendre polynomials are:


* assoc_legendre(0, 0, x) = 1
* assoc_legendre(1, 0, x) = x
* assoc_legendre(1, 1, x) = (1-x2
)1/2
* assoc_legendre(2, 0, x) =


1
2


(3x2
-1)
* assoc_legendre(2, 1, x) = 3x(1-x2
)1/2
* assoc_legendre(2, 2, x) = 3(1-x2
)

// Run this code


#include <cmath>
#include <iostream>
double P20(double x) { return 0.5*(3*x*x-1); }
double P21(double x) { return 3.0*x*std::sqrt(1-x*x); }
double P22(double x) { return 3*(1-x*x); }
int main()
{
// spot-checks
std::cout << std::assoc_legendre(2, 0, 0.5) << '=' << P20(0.5) << '\n'
<< std::assoc_legendre(2, 1, 0.5) << '=' << P21(0.5) << '\n'
<< std::assoc_legendre(2, 2, 0.5) << '=' << P22(0.5) << '\n';
}


-0.125=-0.125
1.29904=1.29904
2.25=2.25


legendre
legendref
legendrel Legendre polynomials
(C++17) (function)
(C++17)
(C++17)


Weisstein, Eric W. "Associated Legendre Polynomial." From MathWorld--A Wolfram Web
Resource.

2022.07.31 http://cppreference.com

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.