GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
std::comp_ellint_1,std::comp_ellint_1f,std::comp_ellint_1l(3) C++ Standard Libary std::comp_ellint_1,std::comp_ellint_1f,std::comp_ellint_1l(3)

std::comp_ellint_1,std::comp_ellint_1f,std::comp_ellint_1l - std::comp_ellint_1,std::comp_ellint_1f,std::comp_ellint_1l


Defined in header <cmath>
double comp_ellint_1( double k );


float comp_ellint_1( float k );
long double comp_ellint_1( long double k ); (1) (since C++17)
float comp_ellint_1f( float k );


long double comp_ellint_1l( long double k );
double comp_ellint_1( IntegralType k ); (2) (since C++17)


1) Computes the complete elliptic integral of the first kind of k.
2) A set of overloads or a function template accepting an argument of any integral
type. Equivalent to (1) after casting the argument to double.


k - elliptic modulus or eccentricity (a value of a floating-point or integral type)


If no errors occur, value of the complete elliptic integral of the first kind of k,
that is ellint_1(k,π/2), is returned.


Errors may be reported as specified in math_errhandling


* If the argument is NaN, NaN is returned and domain error is not reported
* If |k|>1, a domain error may occur


Implementations that do not support C++17, but support ISO 29124:2010, provide this
function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value
at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
including any standard library headers.


Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1),
provide this function in the header tr1/cmath and namespace std::tr1.


An implementation of this function is also available in boost.math


The period of a pendulum of length l, given acceleration due to gravity g, and
initial angle θ equals 4

l/gK(sin2
(θ/2)), where K is std::comp_ellint_1.

// Run this code


#include <cmath>
#include <iostream>
int main()
{
double hpi = std::acos(-1)/2;
std::cout << "K(0) = " << std::comp_ellint_1(0) << '\n'
<< "π/2 = " << hpi << '\n'
<< "K(0.5) = " << std::comp_ellint_1(0.5) << '\n'
<< "F(0.5, π/2) = " << std::ellint_1(0.5, hpi) << '\n';
std::cout << "Period of a pendulum length 1 m at 90° initial angle is "
<< 4*std::sqrt(1/9.80665)*
std::comp_ellint_1(std::pow(std::sin(hpi/2),2)) << " s\n";
}


K(0) = 1.5708
π/2 = 1.5708
K(0.5) = 1.68575
F(0.5, π/2) = 1.68575
Period of a pendulum length 1 m at 90° initial angle is 2.15324 s


ellint_1
ellint_1f
ellint_1l (incomplete) elliptic integral of the first kind
(C++17) (function)
(C++17)
(C++17)


Weisstein, Eric W. "Complete Elliptic Integral of the First Kind." From MathWorld
— A Wolfram Web Resource.

2022.07.31 http://cppreference.com

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.