GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
std::erf,std::erff,std::erfl(3) C++ Standard Libary std::erf,std::erff,std::erfl(3)

std::erf,std::erff,std::erfl - std::erf,std::erff,std::erfl


Defined in header <cmath>
float erf ( float arg ); (1) (since C++11)
float erff( float arg );
double erf ( double arg ); (2) (since C++11)
long double erf ( long double arg ); (3) (since C++11)
long double erfl( long double arg );
double erf ( IntegralType arg ); (4) (since C++11)


1-3) Computes the error function of arg.
4) A set of overloads or a function template accepting an argument of any integral
type. Equivalent to (2) (the argument is cast to double).


arg - value of a floating-point or integral type


If no errors occur, value of the error function of arg, that is
\(\frac{2}{\sqrt{\pi} }\int_{0}^{arg}{e^{-{t^2} }\mathsf{d}t}\)


2

π


∫arg
0e^-t2
dt, is returned.


If a range error occurs due to underflow, the correct result (after rounding), that
is \(\frac{2\cdot arg}{\sqrt{\pi} }\)


2*arg

π


is returned


Errors are reported as specified in math_errhandling.


If the implementation supports IEEE floating-point arithmetic (IEC 60559),


* If the argument is ±0, ±0 is returned
* If the argument is ±∞, ±1 is returned
* If the argument is NaN, NaN is returned


Underflow is guaranteed if |arg| < DBL_MIN*(sqrt(π)/2)


\(\operatorname{erf}(\frac{x}{\sigma \sqrt{2} })\)erf(


x
σ

2


) is the probability that a measurement whose errors are subject to a normal
distribution with standard deviation \(\sigma\)σ is less than \(x\)x away from the
mean value.


The following example calculates the probability that a normal variate is on the
interval (x1, x2)

// Run this code


#include <iostream>
#include <cmath>
#include <iomanip>
double phi(double x1, double x2)
{
return (std::erf(x2/std::sqrt(2)) - std::erf(x1/std::sqrt(2)))/2;
}
int main()
{
std::cout << "normal variate probabilities:\n"
<< std::fixed << std::setprecision(2);
for(int n=-4; n<4; ++n)
std::cout << "[" << std::setw(2) << n << ":" << std::setw(2) << n+1 << "]: "
<< std::setw(5) << 100*phi(n, n+1) << "%\n";


std::cout << "special values:\n"
<< "erf(-0) = " << std::erf(-0.0) << '\n'
<< "erf(Inf) = " << std::erf(INFINITY) << '\n';
}


normal variate probabilities:
[-4:-3]: 0.13%
[-3:-2]: 2.14%
[-2:-1]: 13.59%
[-1: 0]: 34.13%
[ 0: 1]: 34.13%
[ 1: 2]: 13.59%
[ 2: 3]: 2.14%
[ 3: 4]: 0.13%
special values:
erf(-0) = -0.00
erf(Inf) = 1.00


erfc
erfcf
erfcl complementary error function
(C++11) (function)
(C++11)
(C++11)


Weisstein, Eric W. "Erf." From MathWorld--A Wolfram Web Resource.

2022.07.31 http://cppreference.com

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.