GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
std::erfc,std::erfcf,std::erfcl(3) C++ Standard Libary std::erfc,std::erfcf,std::erfcl(3)

std::erfc,std::erfcf,std::erfcl - std::erfc,std::erfcf,std::erfcl


Defined in header <cmath>
float erfc ( float arg ); (1) (since C++11)
float erfcf( float arg );
double erfc ( double arg ); (2) (since C++11)
long double erfc ( long double arg ); (3) (since C++11)
long double erfcl( long double arg );
double erfc ( IntegralType arg ); (4) (since C++11)


1-3) Computes the complementary error function of arg, that is 1.0-erf(arg), but
without loss of precision for large arg
4) A set of overloads or a function template accepting an argument of any integral
type. Equivalent to (2) (the argument is cast to double).


arg - value of a floating-point or integral type


If no errors occur, value of the complementary error function of arg, that is
\(\frac{2}{\sqrt{\pi} }\int_{arg}^{\infty}{e^{-{t^2} }\mathsf{d}t}\)


2

π


∫∞
arge^-t2
dt or \({\small 1-\operatorname{erf}(arg)}\)1-erf(arg), is returned.


If a range error occurs due to underflow, the correct result (after rounding) is
returned


Errors are reported as specified in math_errhandling.


If the implementation supports IEEE floating-point arithmetic (IEC 60559),


* If the argument is +∞, +0 is returned
* If the argument is -∞, 2 is returned
* If the argument is NaN, NaN is returned


For the IEEE-compatible type double, underflow is guaranteed if arg > 26.55.

// Run this code


#include <iostream>
#include <cmath>
#include <iomanip>
double normalCDF(double x) // Phi(-∞, x) aka N(x)
{
return std::erfc(-x/std::sqrt(2))/2;
}
int main()
{
std::cout << "normal cumulative distribution function:\n"
<< std::fixed << std::setprecision(2);
for(double n=0; n<1; n+=0.1)
std::cout << "normalCDF(" << n << ") " << 100*normalCDF(n) << "%\n";


std::cout << "special values:\n"
<< "erfc(-Inf) = " << std::erfc(-INFINITY) << '\n'
<< "erfc(Inf) = " << std::erfc(INFINITY) << '\n';
}


normal cumulative distribution function:
normalCDF(0.00) 50.00%
normalCDF(0.10) 53.98%
normalCDF(0.20) 57.93%
normalCDF(0.30) 61.79%
normalCDF(0.40) 65.54%
normalCDF(0.50) 69.15%
normalCDF(0.60) 72.57%
normalCDF(0.70) 75.80%
normalCDF(0.80) 78.81%
normalCDF(0.90) 81.59%
normalCDF(1.00) 84.13%
special values:
erfc(-Inf) = 2.00
erfc(Inf) = 0.00


erf
erff
erfl error function
(C++11) (function)
(C++11)
(C++11)


Weisstein, Eric W. "Erfc." From MathWorld--A Wolfram Web Resource.

2022.07.31 http://cppreference.com

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.