GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
std::expint,std::expintf,std::expintl(3) C++ Standard Libary std::expint,std::expintf,std::expintl(3)

std::expint,std::expintf,std::expintl - std::expint,std::expintf,std::expintl


Defined in header <cmath>
double expint( double arg );


float expint( float arg );
long double expint( long double arg ); (1) (since C++17)
float expintf( float arg );


long double expintl( long double arg );
double expint( IntegralType arg ); (2) (since C++17)


1) Computes the exponential integral of arg.
2) A set of overloads or a function template accepting an argument of any integral
type. Equivalent to (1) after casting the argument to double.


arg - value of a floating-point or Integral type


If no errors occur, value of the exponential integral of arg, that is -∫∞
-arg


e^-t
t


dt, is returned.


Errors may be reported as specified in math_errhandling


* If the argument is NaN, NaN is returned and domain error is not reported
* If the argument is ±0, -∞ is returned


Implementations that do not support C++17, but support ISO 29124:2010, provide this
function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value
at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
including any standard library headers.


Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1),
provide this function in the header tr1/cmath and namespace std::tr1.


An implementation of this function is also available in boost.math

// Run this code


#include <algorithm>
#include <iostream>
#include <vector>
#include <cmath>


template <int Height = 5, int BarWidth = 1, int Padding = 1, int Offset = 0, class Seq>
void draw_vbars(Seq&& s, const bool DrawMinMax = true) {
static_assert((Height > 0) && (BarWidth > 0) && (Padding >= 0) && (Offset >= 0));
auto cout_n = [](auto&& v, int n = 1) { while (n-- > 0) std::cout << v; };
const auto [min, max] = std::minmax_element(std::cbegin(s), std::cend(s));
std::vector<std::div_t> qr;
for (typedef decltype(*cbegin(s)) V; V e : s)
qr.push_back(std::div(std::lerp(V(0), Height*8, (e - *min)/(*max - *min)), 8));
for (auto h{Height}; h-- > 0; cout_n('\n')) {
cout_n(' ', Offset);
for (auto dv : qr) {
const auto q{dv.quot}, r{dv.rem};
unsigned char d[] { 0xe2, 0x96, 0x88, 0 }; // Full Block: '█'
q < h ? d[0] = ' ', d[1] = 0 : q == h ? d[2] -= (7 - r) : 0;
cout_n(d, BarWidth), cout_n(' ', Padding);
}
if (DrawMinMax && Height > 1)
Height - 1 == h ? std::cout << "┬ " << *max:
h ? std::cout << "│ "
: std::cout << "┴ " << *min;
}
}


int main()
{
std::cout << "Ei(0) = " << std::expint(0) << '\n'
<< "Ei(1) = " << std::expint(1) << '\n'
<< "Gompertz constant = " << -std::exp(1)*std::expint(-1) << '\n';


std::vector<float> v;
for (float x{1.f}; x < 8.8f; x += 0.3565f)
v.push_back(std::expint(x));
draw_vbars<9,1,1>(v);
}


Ei(0) = -inf
Ei(1) = 1.89512
Gompertz constant = 0.596347
█ ┬ 666.505
█ │
▆ █ │
█ █ │
█ █ █ │
▆ █ █ █ │
▁ ▆ █ █ █ █ │
▂ ▅ █ █ █ █ █ █ │
▁ ▁ ▁ ▁ ▁ ▁ ▁ ▂ ▂ ▃ ▃ ▄ ▆ ▇ █ █ █ █ █ █ █ █ ┴ 1.89512


Weisstein, Eric W. "Exponential Integral." From MathWorld--A Wolfram Web Resource.

2022.07.31 http://cppreference.com

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.