GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
std::legendre,std::legendref,std::legendrel(3) C++ Standard Libary std::legendre,std::legendref,std::legendrel(3)

std::legendre,std::legendref,std::legendrel - std::legendre,std::legendref,std::legendrel


Defined in header <cmath>
double legendre( unsigned int n, double x );


float legendre( unsigned int n, float x );
long double legendre( unsigned int n, long double x ); (1) (since C++17)
float legendref( unsigned int n, float x );


long double legendrel( unsigned int n, long double x );
double legendre( unsigned int n, IntegralType x ); (2) (since C++17)


1) Computes the unassociated Legendre polynomials of the degree n and argument x
2) A set of overloads or a function template accepting an argument of any integral
type. Equivalent to (1) after casting the argument to double.


n - the degree of the polynomial
x - the argument, a value of a floating-point or integral type


If no errors occur, value of the order-n unassociated Legendre polynomial of x, that
is \(\mathsf{P}_n(x) = \frac{1}{2^n n!} \frac{\mathsf{d}^n}{\mathsf{d}x^n} (x^2-1)^n
\)


1
2n
n!


dn
dxn


(x2
-1)n
, is returned.


Errors may be reported as specified in math_errhandling


* If the argument is NaN, NaN is returned and domain error is not reported
* The function is not required to be defined for |x|>1
* If n is greater or equal than 128, the behavior is implementation-defined


Implementations that do not support C++17, but support ISO 29124:2010, provide this
function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value
at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
including any standard library headers.


Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1),
provide this function in the header tr1/cmath and namespace std::tr1.


An implementation of this function is also available in boost.math


The first few Legendre polynomials are:


* legendre(0, x) = 1
* legendre(1, x) = x
* legendre(2, x) =


1
2


(3x2
-1)
* legendre(3, x) =


1
2


(5x3
-3x)
* legendre(4, x) =


1
8


(35x4
-30x2
+3)

// Run this code


#include <cmath>
#include <iostream>
double P3(double x) { return 0.5*(5*std::pow(x,3) - 3*x); }
double P4(double x) { return 0.125*(35*std::pow(x,4)-30*x*x+3); }
int main()
{
// spot-checks
std::cout << std::legendre(3, 0.25) << '=' << P3(0.25) << '\n'
<< std::legendre(4, 0.25) << '=' << P4(0.25) << '\n';
}


-0.335938=-0.335938
0.157715=0.157715


laguerre
laguerref
laguerrel Laguerre polynomials
(C++17) (function)
(C++17)
(C++17)
hermite
hermitef
hermitel Hermite polynomials
(C++17) (function)
(C++17)
(C++17)


Weisstein, Eric W. "Legendre Polynomial." From MathWorld--A Wolfram Web Resource.

2022.07.31 http://cppreference.com

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.