GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
std::sph_bessel,std::sph_besself,std::sph_bessell(3) C++ Standard Libary std::sph_bessel,std::sph_besself,std::sph_bessell(3)

std::sph_bessel,std::sph_besself,std::sph_bessell - std::sph_bessel,std::sph_besself,std::sph_bessell


Defined in header <cmath>
double sph_bessel ( unsigned n, double x );


float sph_bessel ( unsigned n, float x );
long double sph_bessel ( unsigned n, long double x ); (1) (since C++17)
float sph_besself( unsigned n, float x );


long double sph_bessell( unsigned n, long double x );
double sph_bessel( unsigned n, IntegralType x ); (2) (since C++17)


1) Computes the spherical Bessel function of the first kind of n and x.
2) A set of overloads or a function template accepting an argument of any integral
type. Equivalent to (1) after casting the argument to double.


n - the order of the function
x - the argument of the function


If no errors occur, returns the value of the spherical Bessel function of the first
kind of n and x, that is j
n(x) = (π/2x)1/2
J
n+1/2(x) where J
n(x) is std::cyl_bessel_j(n,x) and x≥0


Errors may be reported as specified in math_errhandling


* If the argument is NaN, NaN is returned and domain error is not reported
* If n>=128, the behavior is implementation-defined


Implementations that do not support C++17, but support ISO 29124:2010, provide this
function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value
at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
including any standard library headers.


Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1),
provide this function in the header tr1/cmath and namespace std::tr1.


An implementation of this function is also available in boost.math

// Run this code


#include <cmath>
#include <iostream>
int main()
{
// spot check for n == 1
double x = 1.2345;
std::cout << "j_1(" << x << ") = " << std::sph_bessel(1, x) << '\n';


// exact solution for j_1
std::cout << "(sin x)/x^2 - (cos x)/x = " << std::sin(x)/(x*x) - std::cos(x)/x << '\n';
}


j_1(1.2345) = 0.352106
(sin x)/x^2 - (cos x)/x = 0.352106


cyl_bessel_j
cyl_bessel_jf
cyl_bessel_jl cylindrical Bessel functions (of the first kind)
(C++17) (function)
(C++17)
(C++17)
sph_neumann
sph_neumannf
sph_neumannl spherical Neumann functions
(C++17) (function)
(C++17)
(C++17)


Weisstein, Eric W. "Spherical Bessel Function of the First Kind." From MathWorld —
A Wolfram Web Resource.

2022.07.31 http://cppreference.com

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.