GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
std::sph_legendre,std::sph_legendref,std::sph_legendrel(3) C++ Standard Libary std::sph_legendre,std::sph_legendref,std::sph_legendrel(3)

std::sph_legendre,std::sph_legendref,std::sph_legendrel - std::sph_legendre,std::sph_legendref,std::sph_legendrel


Defined in header <cmath>
double sph_legendre ( unsigned l, unsigned m, double θ );


float sph_legendre ( unsigned l, unsigned m, float θ );
long double sph_legendre ( unsigned l, unsigned m, long double θ
); (1) (since C++17)
float sph_legendref( unsigned l, unsigned m, float θ );


long double sph_legendrel( unsigned l, unsigned m, long double θ
);
double sph_legendre ( unsigned l, unsigned m, IntegralType θ ); (2) (since C++17)


1) Computes the spherical associated Legendre function of degree l, order m, and
polar angle θ.
2) A set of overloads or a function template accepting an argument of any integral
type. Equivalent to (1) after casting the argument to double.


l - degree
m - order
θ - polar angle, measured in radians


If no errors occur, returns the value of the spherical associated Legendre function
(that is, spherical harmonic with ϕ = 0) of l, m, and θ, where the spherical
harmonic function is defined as Ym
l(θ,ϕ) = (-1)m
[


(2l+1)(l-m)!
4π(l+m)!


]1/2
Pm
l(cosθ)eimϕ
where Pm
l(x) is std::assoc_legendre(l,m,x)) and |m|≤l


Note that the Condon-Shortley phase term (-1)m
is included in this definition because it is omitted from the definition of Pm
l in std::assoc_legendre.


Errors may be reported as specified in math_errhandling


* If the argument is NaN, NaN is returned and domain error is not reported
* If l≥128, the behavior is implementation-defined


Implementations that do not support C++17, but support ISO 29124:2010, provide this
function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value
at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before
including any standard library headers.


Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1),
provide this function in the header tr1/cmath and namespace std::tr1.


An implementation of the spherical harmonic function is available in boost.math, and
it reduces to this function when called with the parameter phi set to zero.

// Run this code


#include <cmath>
#include <iostream>
int main()
{
// spot check for l=3, m=0
double x = 1.2345;
std::cout << "Y_3^0(" << x << ") = " << std::sph_legendre(3, 0, x) << '\n';


// exact solution
double pi = std::acos(-1);
std::cout << "exact solution = "
<< 0.25*std::sqrt(7/pi)*(5*std::pow(std::cos(x),3)-3*std::cos(x))
<< '\n';
}


Y_3^0(1.2345) = -0.302387
exact solution = -0.302387


assoc_legendre
assoc_legendref
assoc_legendrel associated Legendre polynomials
(C++17) (function)
(C++17)
(C++17)


Weisstein, Eric W. "Spherical Harmonic." From MathWorld — A Wolfram Web Resource.

2022.07.31 http://cppreference.com

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.