GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
std::sqrt,std::sqrtf,std::sqrtl(3) C++ Standard Libary std::sqrt,std::sqrtf,std::sqrtl(3)

std::sqrt,std::sqrtf,std::sqrtl - std::sqrt,std::sqrtf,std::sqrtl


Defined in header <cmath>
float sqrt ( float arg );
float sqrtf( float arg ); (since C++11)
double sqrt ( double arg ); (1) (2)
long double sqrt ( long double arg );
long double sqrtl( long double arg ); (3) (since C++11)
double sqrt ( IntegralType arg ); (4) (since C++11)


1-3) Computes the square root of arg.
4) A set of overloads or a function template accepting an argument of any integral
type. Equivalent to (2) (the argument is cast to double).


arg - Value of a floating-point or integral type


If no errors occur, square root of arg (\({\small \sqrt{arg} }\)

arg), is returned.


If a domain error occurs, an implementation-defined value is returned (NaN where
supported)


If a range error occurs due to underflow, the correct result (after rounding) is
returned.


Errors are reported as specified in math_errhandling


Domain error occurs if arg is less than zero.


If the implementation supports IEEE floating-point arithmetic (IEC 60559),


* If the argument is less than -0, FE_INVALID is raised and NaN is returned.
* If the argument is +∞ or ±0, it is returned, unmodified.
* If the argument is NaN, NaN is returned


std::sqrt is required by the IEEE standard to be exact. The only other operations
required to be exact are the arithmetic operators and the function std::fma. After
rounding to the return type (using default rounding mode), the result of std::sqrt
is indistinguishable from the infinitely precise result. In other words, the error
is less than 0.5 ulp. Other functions, including std::pow, are not so constrained.

// Run this code


#include <iostream>
#include <cmath>
#include <cerrno>
#include <cfenv>
#include <cstring>


#pragma STDC FENV_ACCESS ON


int main()
{
// normal use
std::cout << "sqrt(100) = " << std::sqrt(100) << '\n'
<< "sqrt(2) = " << std::sqrt(2) << '\n'
<< "golden ratio = " << (1+std::sqrt(5))/2 << '\n';
// special values
std::cout << "sqrt(-0) = " << std::sqrt(-0.0) << '\n';
// error handling
errno = 0;
std::feclearexcept(FE_ALL_EXCEPT);
std::cout << "sqrt(-1.0) = " << std::sqrt(-1) << '\n';
if(errno == EDOM)
std::cout << " errno = EDOM " << std::strerror(errno) << '\n';
if(std::fetestexcept(FE_INVALID))
std::cout << " FE_INVALID raised\n";
}


sqrt(100) = 10
sqrt(2) = 1.41421
golden ratio = 1.61803
sqrt(-0) = -0
sqrt(-1.0) = -nan
errno = EDOM Numerical argument out of domain
FE_INVALID raised


pow
powf raises a number to the given power (\(\small{x^y}\)x^y)
powl (function)
(C++11)
(C++11)
cbrt computes cubic root (\(\small{\sqrt[3]{x} }\)
cbrtf 3
cbrtl √
(C++11) x)
(C++11) (function)
(C++11)
computes square root of the sum of the squares of two or three
(C++17) given numbers (\(\scriptsize{\sqrt{x^2+y^2} }\)

hypot x2
hypotf +y2
hypotl ), (\(\scriptsize{\sqrt{x^2+y^2+z^2} }\)
(C++11)
(C++11) x2
(C++11) +y2
+z2
)
(function)
sqrt(std::complex) complex square root in the range of the right half-plane
(function template)
sqrt(std::valarray) applies the function std::sqrt to each element of valarray
(function template)

2022.07.31 http://cppreference.com

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.