GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
std::tan,std::tanf,std::tanl(3) C++ Standard Libary std::tan,std::tanf,std::tanl(3)

std::tan,std::tanf,std::tanl - std::tan,std::tanf,std::tanl


Defined in header <cmath>
float tan ( float arg );
float tanf( float arg ); (since C++11)
double tan ( double arg ); (1) (2)
long double tan ( long double arg );
long double tanl( long double arg ); (3) (since C++11)
double tan ( IntegralType arg ); (4) (since C++11)


1-3) Computes the tangent of arg (measured in radians).
4) A set of overloads or a function template accepting an argument of any integral
type. Equivalent to 2) (the argument is cast to double).


arg - value representing angle in radians, of a floating-point or Integral type


If no errors occur, the tangent of arg (tan(arg)) is returned.


The result may have little or no significance if the magnitude of arg (until C++11)
is large


If a domain error occurs, an implementation-defined value is returned (NaN where
supported)


If a range error occurs due to underflow, the correct result (after rounding) is
returned.


Errors are reported as specified in math_errhandling.


If the implementation supports IEEE floating-point arithmetic (IEC 60559),


* if the argument is ±0, it is returned unmodified
* if the argument is ±∞, NaN is returned and FE_INVALID is raised
* if the argument is NaN, NaN is returned


The case where the argument is infinite is not specified to be a domain error in C
(to which C++ defers), but it is defined as a domain error in POSIX


The function has mathematical poles at π(1/2 + n); however no common floating-point
representation is able to represent π/2 exactly, thus there is no value of the
argument for which a pole error occurs.

// Run this code


#include <iostream>
#include <cmath>
#include <cerrno>
#include <cfenv>
// #pragma STDC FENV_ACCESS ON


const double pi = std::acos(-1); // or C++20's std::numbers::pi
int main()
{
// typical usage
std::cout << "tan(1*pi/4) = " << std::tan(1*pi/4) << '\n' // 45°
<< "tan(3*pi/4) = " << std::tan(3*pi/4) << '\n' // 135°
<< "tan(5*pi/4) = " << std::tan(5*pi/4) << '\n' // -135°
<< "tan(7*pi/4) = " << std::tan(7*pi/4) << '\n'; // -45°
// special values
std::cout << "tan(+0) = " << std::tan(0.0) << '\n'
<< "tan(-0) = " << std::tan(-0.0) << '\n';
// error handling
std::feclearexcept(FE_ALL_EXCEPT);
std::cout << "tan(INFINITY) = " << std::tan(INFINITY) << '\n';
if (std::fetestexcept(FE_INVALID))
std::cout << " FE_INVALID raised\n";
}


tan(1*pi/4) = 1
tan(3*pi/4) = -1
tan(5*pi/4) = 1
tan(7*pi/4) = -1
tan(+0) = 0
tan(-0) = -0
tan(INFINITY) = -nan
FE_INVALID raised


sin
sinf computes sine (\({\small\sin{x} }\)sin(x))
sinl (function)
(C++11)
(C++11)
cos
cosf computes cosine (\({\small\cos{x} }\)cos(x))
cosl (function)
(C++11)
(C++11)
atan
atanf computes arc tangent (\({\small\arctan{x} }\)arctan(x))
atanl (function)
(C++11)
(C++11)
tan(std::complex) computes tangent of a complex number (\({\small\tan{z} }\)tan(z))
(function template)
tan(std::valarray) applies the function std::tan to each element of valarray
(function template)

2022.07.31 http://cppreference.com

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.