GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
std::tgamma,std::tgammaf,std::tgammal(3) C++ Standard Libary std::tgamma,std::tgammaf,std::tgammal(3)

std::tgamma,std::tgammaf,std::tgammal - std::tgamma,std::tgammaf,std::tgammal


Defined in header <cmath>
float tgamma ( float arg ); (1) (since C++11)
float tgammaf( float arg );
double tgamma ( double arg ); (2) (since C++11)
long double tgamma ( long double arg ); (3) (since C++11)
long double tgammal( long double arg );
double tgamma ( IntegralType arg ); (4) (since C++11)


1-3) Computes the gamma function of arg.
4) A set of overloads or a function template accepting an argument of any integral
type. Equivalent to 2) (the argument is cast to double).


arg - value of a floating-point or Integral type


If no errors occur, the value of the gamma function of arg, that is
\(\Gamma(\mathtt{arg}) = \displaystyle\int_0^\infty\!\! t^{\mathtt{arg}-1} e^{-t}\,
dt\)∫∞
0targ-1
e^-t dt, is returned


If a domain error occurs, an implementation-defined value (NaN where supported) is
returned.


If a pole error occurs, ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL is returned.


If a range error due to overflow occurs, ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL is
returned.


If a range error due to underflow occurs, the correct value (after rounding) is
returned.


Errors are reported as specified in math_errhandling.


If arg is zero or is an integer less than zero, a pole error or a domain error may
occur.


If the implementation supports IEEE floating-point arithmetic (IEC 60559),


* If the argument is ±0, ±∞ is returned and FE_DIVBYZERO is raised
* If the argument is a negative integer, NaN is returned and FE_INVALID is raised
* If the argument is -∞, NaN is returned and FE_INVALID is raised
* If the argument is +∞, +∞ is returned.
* If the argument is NaN, NaN is returned


If arg is a natural number, std::tgamma(arg) is the factorial of arg-1. Many
implementations calculate the exact integer-domain factorial if the argument is a
sufficiently small integer.


For IEEE-compatible type double, overflow happens if 0 < x < 1/DBL_MAX or if x >
171.7


POSIX requires that a pole error occurs if the argument is zero, but a domain error
occurs when the argument is a negative integer. It also specifies that in future,
domain errors may be replaced by pole errors for negative integer arguments (in
which case the return value in those cases would change from NaN to ±∞).


There is a non-standard function named gamma in various implementations, but its
definition is inconsistent. For example, glibc and 4.2BSD version of gamma executes
lgamma, but 4.4BSD version of gamma executes tgamma.

// Run this code


#include <iostream>
#include <cmath>
#include <cerrno>
#include <cstring>
#include <cfenv>
#pragma STDC FENV_ACCESS ON
int main()
{
std::cout << "tgamma(10) = " << std::tgamma(10)
<< ", 9! = " << 2*3*4*5*6*7*8*9 << '\n'
<< "tgamma(0.5) = " << std::tgamma(0.5)
<< ", sqrt(pi) = " << std::sqrt(std::acos(-1)) << '\n';
// special values
std::cout << "tgamma(1) = " << std::tgamma(1) << '\n'
<< "tgamma(+Inf) = " << std::tgamma(INFINITY) << '\n';
// error handling
errno=0;
std::feclearexcept(FE_ALL_EXCEPT);
std::cout << "tgamma(-1) = " << std::tgamma(-1) << '\n';
if (errno == EDOM)
std::cout << " errno == EDOM: " << std::strerror(errno) << '\n';
if (std::fetestexcept(FE_INVALID))
std::cout << " FE_INVALID raised\n";
}


tgamma(10) = 362880, 9! = 362880
tgamma(0.5) = 1.77245, sqrt(pi) = 1.77245
tgamma(1) = 1
tgamma(+Inf) = inf
tgamma(-1) = nan
errno == EDOM: Numerical argument out of domain
FE_INVALID raised


lgamma
lgammaf
lgammal natural logarithm of the gamma function
(C++11) (function)
(C++11)
(C++11)
beta
betaf
betal beta function
(C++17) (function)
(C++17)
(C++17)


Weisstein, Eric W. "Gamma Function." From MathWorld--A Wolfram Web Resource.

2022.07.31 http://cppreference.com

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.