constexpr variant() noexcept(/* see below */); (1)
(since C++17)
constexpr variant( const variant& other ); (2) (since
C++17)
constexpr variant( variant&& other ) noexcept(/* see below */);
(3) (since C++17)
template< class T > (4) (since C++17)
constexpr variant( T&& t ) noexcept(/* see below */);
template< class T,
class... Args > (5) (since C++17)
constexpr explicit variant( std::in_place_type_t<T>,
Args&&... args );
template< class T,
class U,
class... Args > (6) (since C++17)
constexpr explicit variant( std::in_place_type_t<T>,
std::initializer_list<U> il,
Args&&... args );
template< std::size_t I,
class... Args > (7) (since C++17)
constexpr explicit variant( std::in_place_index_t<I>,
Args&&... args );
template< std::size_t I,
class U,
class... Args > (8) (since C++17)
constexpr explicit variant( std::in_place_index_t<I>,
std::initializer_list<U> il,
Args&&... args );
Constructs a new variant object.
1) Default constructor. Constructs a variant holding the value-initialized
value of
the first alternative (index() is zero).
* This constructor is constexpr if and only if the value initialization of
the
alternative type T_0 would satisfy the requirements for a constexpr function.
* This overload participates in overload resolution only if
std::is_default_constructible_v<T_0> is true.
2) Copy constructor. If other is not valueless_by_exception, constructs a
variant
holding the same alternative as other and direct-initializes the contained
value
with std::get<other.index()>(other). Otherwise, initializes a
valueless_by_exception
variant.
* This constructor is defined as deleted unless
std::is_copy_constructible_v<T_i>
is true for all T_i in Types....
* It is trivial if std::is_trivially_copy_constructible_v<T_i> is true
for all T_i
in Types....
3) Move constructor. If other is not valueless_by_exception, constructs a
variant
holding the same alternative as other and direct-initializes the contained
value
with std::get<other.index()>(std::move(other)). Otherwise, initializes
a
valueless_by_exception variant.
* This overload participates in overload resolution only if
std::is_move_constructible_v<T_i> is true for all T_i in Types....
* It is trivial if std::is_trivially_move_constructible_v<T_i> is true
for all T_i
in Types....
4) Converting constructor. Constructs a variant holding the alternative type
T_j
that would be selected by overload resolution for the expression
F(std::forward<T>(t)) if there was an overload of imaginary function
F(T_i) for
every T_i from Types... in scope at the same time, except that:
* An overload F(T_i) is only considered if the declaration T_i x[] = {
std::forward<T>(t) }; is valid for some invented variable x;
Direct-initializes the contained value as if by direct
non-list-initialization from
std::forward<T>(t).
* This overload participates in overload resolution only if
* sizeof...(Types) > 0,
* std::decay_t<U>
(until C++20)
std::remove_cvref_t<U>
(since C++20) is neither the same type as variant, nor a
specialization of
std::in_place_type_t, nor a specialization of std::in_place_index_t,
* std::is_constructible_v<T_j, T> is true,
* and the expression F(std::forward<T>(t)) (with F being the
above-mentioned
set of imaginary functions) is well formed.
* This constructor is a constexpr constructor if T_j's selected constructor
is a
constexpr constructor.
std::variant<std::string> v("abc"); // OK
std::variant<std::string, std::string> w("abc"); //
ill-formed
std::variant<std::string, const char*> x("abc"); // OK,
chooses const char*
std::variant<std::string, bool> y("abc"); // OK, chooses
string; bool is not a candidate
std::variant<float, long, double> z = 0; // OK, holds long
// float and double are not candidates
5) Constructs a variant with the specified alternative T and initializes the
contained value with the arguments std::forward<Args>(args)....
* If T's selected constructor is a constexpr constructor, this constructor is
also
a constexpr constructor.
* This overload participates in overload resolution only if there is exactly
one
occurrence of T in Types... and std::is_constructible_v<T, Args...> is
true.
6) Constructs a variant with the specified alternative T and initializes the
contained value with the arguments il, std::forward<Args>(args)....
* If T's selected constructor is a constexpr constructor, this constructor is
also
a constexpr constructor.
* This overload participates in overload resolution only if there is exactly
one
occurrence of T in Types... and std::is_constructible_v<T,
initializer_list<U>&,
Args...> is true.
7) Constructs a variant with the alternative T_i specified by the index I and
initializes the contained value with the arguments
std::forward<Args>(args)....
* If T_i's selected constructor is a constexpr constructor, this constructor
is
also a constexpr constructor.
* This overload participates in overload resolution only if I <
sizeof...(Types)
and std::is_constructible_v<T_i, Args...> is true.
8) Constructs a variant with the alternative T_i specified by the index I and
initializes the contained value with the arguments il,
std::forward<Args>(args)....
* If T_i's selected constructor is a constexpr constructor, this constructor
is
also a constexpr constructor.
* This overload participates in overload resolution only if I <
sizeof...(Types)
and std::is_constructible_v<T_i, std::initializer_list<U>&,
Args...> is true.
// Run this code
#include <cassert>
#include <iostream>
#include <string>
#include <variant>
#include <vector>
template <class Os> Os& operator<< (Os& os, const
std::vector<int>& v) {
os << "{ ";
for (int e: v) { std::cout << e << ' '; }
return os << "}";
}
int main()
{
{
std::variant<int, std::string> var; // value-initializes first
alternative
assert(std::holds_alternative<int>(var) && var.index() == 0
&&
std::get<int>(var) == 0);
}
{
std::variant<std::string, int> var{"STR"};
// initializes first alternative with std::string{"STR"};
assert(var.index() == 0);
std::cout << "1) " << std::get<std::string>(var)
<< '\n';
}
{
std::variant<std::string, int> var{42};
// initializes second alternative with int = 42;
assert(std::holds_alternative<int>(var));
std::cout << "2) " << std::get<int>(var) <<
'\n';
}
{
std::variant<std::string, std::vector<int>, float> var{
std::in_place_type<std::string>, 4, 'A'};
// initializes first alternative with std::string{4, 'A'};
assert(var.index() == 0);
std::cout << "3) " << std::get<std::string>(var)
<< '\n';
}
{
std::variant<std::string, std::vector<int>, char> var{
std::in_place_type<std::vector<int>>, {1,2,3,4,5} };
// initializes second alternative with std::vector{1,2,3,4,5};
assert(var.index() == 1);
std::cout << "4) " <<
std::get<std::vector<int>>(var) << '\n';
}
{
std::variant<std::string, std::vector<int>, bool> var{
std::in_place_index<0>, "ABCDE", 3};
// initializes first alternative with std::string{"ABCDE", 3};
assert(var.index() == 0);
std::cout << "5) " << std::get<std::string>(var)
<< '\n';
}
{
std::variant<std::string, std::vector<int>, char> var{
std::in_place_index<1>, 4, 42};
// initializes second alternative with std::vector(4, 42);
assert(std::holds_alternative<std::vector<int>>(var));
std::cout << "6) " <<
std::get<std::vector<int>>(var) << '\n';
}
}