 |
|
| |
stevd - stevd: eig, divide and conquer
subroutine dstevd (jobz, n, d, e, z, ldz, work, lwork,
iwork, liwork, info)
DSTEVD computes the eigenvalues and, optionally, the left and/or right
eigenvectors for OTHER matrices subroutine sstevd (jobz, n, d, e,
z, ldz, work, lwork, iwork, liwork, info)
SSTEVD computes the eigenvalues and, optionally, the left and/or right
eigenvectors for OTHER matrices
DSTEVD computes the eigenvalues and, optionally, the left
and/or right eigenvectors for OTHER matrices
Purpose:
DSTEVD computes all eigenvalues and, optionally, eigenvectors of a
real symmetric tridiagonal matrix. If eigenvectors are desired, it
uses a divide and conquer algorithm.
Parameters
JOBZ
JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
N
N is INTEGER
The order of the matrix. N >= 0.
D
D is DOUBLE PRECISION array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, if INFO = 0, the eigenvalues in ascending order.
E
E is DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A, stored in elements 1 to N-1 of E.
On exit, the contents of E are destroyed.
Z
Z is DOUBLE PRECISION array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with D(i).
If JOBZ = 'N', then Z is not referenced.
LDZ
LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK
WORK is DOUBLE PRECISION array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER
The dimension of the array WORK.
If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.
If JOBZ = 'V' and N > 1 then LWORK must be at least
( 1 + 4*N + N**2 ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
LIWORK is INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.
If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of E did not converge to zero.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 155 of file dstevd.f.
SSTEVD computes the eigenvalues and, optionally, the left
and/or right eigenvectors for OTHER matrices
Purpose:
SSTEVD computes all eigenvalues and, optionally, eigenvectors of a
real symmetric tridiagonal matrix. If eigenvectors are desired, it
uses a divide and conquer algorithm.
Parameters
JOBZ
JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
N
N is INTEGER
The order of the matrix. N >= 0.
D
D is REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, if INFO = 0, the eigenvalues in ascending order.
E
E is REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A, stored in elements 1 to N-1 of E.
On exit, the contents of E are destroyed.
Z
Z is REAL array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with D(i).
If JOBZ = 'N', then Z is not referenced.
LDZ
LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK
WORK is REAL array,
dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER
The dimension of the array WORK.
If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.
If JOBZ = 'V' and N > 1 then LWORK must be at least
( 1 + 4*N + N**2 ).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal sizes of the WORK and IWORK
arrays, returns these values as the first entries of the WORK
and IWORK arrays, and no error message related to LWORK or
LIWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
LIWORK is INTEGER
The dimension of the array IWORK.
If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.
If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal sizes of the WORK and
IWORK arrays, returns these values as the first entries of
the WORK and IWORK arrays, and no error message related to
LWORK or LIWORK is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of E did not converge to zero.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 155 of file sstevd.f.
Generated automatically by Doxygen for LAPACK from the source
code.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|