GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
SRC/stplqt2.f(3) LAPACK SRC/stplqt2.f(3)

SRC/stplqt2.f


subroutine stplqt2 (m, n, l, a, lda, b, ldb, t, ldt, info)
STPLQT2 computes a LQ factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.

STPLQT2 computes a LQ factorization of a real or complex 'triangular-pentagonal' matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.

Purpose:


STPLQT2 computes a LQ a factorization of a real 'triangular-pentagonal'
matrix C, which is composed of a triangular block A and pentagonal block B,
using the compact WY representation for Q.

Parameters

M


M is INTEGER
The total number of rows of the matrix B.
M >= 0.

N


N is INTEGER
The number of columns of the matrix B, and the order of
the triangular matrix A.
N >= 0.

L


L is INTEGER
The number of rows of the lower trapezoidal part of B.
MIN(M,N) >= L >= 0. See Further Details.

A


A is REAL array, dimension (LDA,M)
On entry, the lower triangular M-by-M matrix A.
On exit, the elements on and below the diagonal of the array
contain the lower triangular matrix L.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

B


B is REAL array, dimension (LDB,N)
On entry, the pentagonal M-by-N matrix B. The first N-L columns
are rectangular, and the last L columns are lower trapezoidal.
On exit, B contains the pentagonal matrix V. See Further Details.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,M).

T


T is REAL array, dimension (LDT,M)
The N-by-N upper triangular factor T of the block reflector.
See Further Details.

LDT


LDT is INTEGER
The leading dimension of the array T. LDT >= max(1,M)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


The input matrix C is a M-by-(M+N) matrix
C = [ A ][ B ]
where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal
matrix consisting of a M-by-(N-L) rectangular matrix B1 left of a M-by-L
upper trapezoidal matrix B2:
B = [ B1 ][ B2 ]
[ B1 ] <- M-by-(N-L) rectangular
[ B2 ] <- M-by-L lower trapezoidal.
The lower trapezoidal matrix B2 consists of the first L columns of a
N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N). If L=0,
B is rectangular M-by-N; if M=L=N, B is lower triangular.
The matrix W stores the elementary reflectors H(i) in the i-th row
above the diagonal (of A) in the M-by-(M+N) input matrix C
C = [ A ][ B ]
[ A ] <- lower triangular M-by-M
[ B ] <- M-by-N pentagonal
so that W can be represented as
W = [ I ][ V ]
[ I ] <- identity, M-by-M
[ V ] <- M-by-N, same form as B.
Thus, all of information needed for W is contained on exit in B, which
we call V above. Note that V has the same form as B; that is,
W = [ V1 ][ V2 ]
[ V1 ] <- M-by-(N-L) rectangular
[ V2 ] <- M-by-L lower trapezoidal.
The rows of V represent the vectors which define the H(i)'s.
The (M+N)-by-(M+N) block reflector H is then given by
H = I - W**T * T * W
where W^H is the conjugate transpose of W and T is the upper triangular
factor of the block reflector.

Definition at line 176 of file stplqt2.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:32 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.