JOB
JOB is CHARACTER*1
Specifies whether condition numbers are required for
eigenvalues (S) or eigenvectors (SEP):
= 'E': for eigenvalues only (S);
= 'V': for eigenvectors only (SEP);
= 'B': for both eigenvalues and eigenvectors (S and SEP).
HOWMNY
HOWMNY is CHARACTER*1
= 'A': compute condition numbers for all eigenpairs;
= 'S': compute condition numbers for selected eigenpairs
specified by the array SELECT.
SELECT
SELECT is LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenpairs for which
condition numbers are required. To select condition numbers
for the eigenpair corresponding to a real eigenvalue w(j),
SELECT(j) must be set to .TRUE.. To select condition numbers
corresponding to a complex conjugate pair of eigenvalues w(j)
and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
set to .TRUE..
If HOWMNY = 'A', SELECT is not referenced.
N
N is INTEGER
The order of the matrix T. N >= 0.
T
T is REAL array, dimension (LDT,N)
The upper quasi-triangular matrix T, in Schur canonical form.
LDT
LDT is INTEGER
The leading dimension of the array T. LDT >= max(1,N).
VL
VL is REAL array, dimension (LDVL,M)
If JOB = 'E' or 'B', VL must contain left eigenvectors of T
(or of any Q*T*Q**T with Q orthogonal), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VL, as returned by
SHSEIN or STREVC.
If JOB = 'V', VL is not referenced.
LDVL
LDVL is INTEGER
The leading dimension of the array VL.
LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
VR
VR is REAL array, dimension (LDVR,M)
If JOB = 'E' or 'B', VR must contain right eigenvectors of T
(or of any Q*T*Q**T with Q orthogonal), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VR, as returned by
SHSEIN or STREVC.
If JOB = 'V', VR is not referenced.
LDVR
LDVR is INTEGER
The leading dimension of the array VR.
LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
S
S is REAL array, dimension (MM)
If JOB = 'E' or 'B', the reciprocal condition numbers of the
selected eigenvalues, stored in consecutive elements of the
array. For a complex conjugate pair of eigenvalues two
consecutive elements of S are set to the same value. Thus
S(j), SEP(j), and the j-th columns of VL and VR all
correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).
If JOB = 'V', S is not referenced.
SEP
SEP is REAL array, dimension (MM)
If JOB = 'V' or 'B', the estimated reciprocal condition
numbers of the selected eigenvectors, stored in consecutive
elements of the array. For a complex eigenvector two
consecutive elements of SEP are set to the same value. If
the eigenvalues cannot be reordered to compute SEP(j), SEP(j)
is set to 0; this can only occur when the true value would be
very small anyway.
If JOB = 'E', SEP is not referenced.
MM
MM is INTEGER
The number of elements in the arrays S (if JOB = 'E' or 'B')
and/or SEP (if JOB = 'V' or 'B'). MM >= M.
M
M is INTEGER
The number of elements of the arrays S and/or SEP actually
used to store the estimated condition numbers.
If HOWMNY = 'A', M is set to N.
WORK
WORK is REAL array, dimension (LDWORK,N+6)
If JOB = 'E', WORK is not referenced.
LDWORK
LDWORK is INTEGER
The leading dimension of the array WORK.
LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
IWORK
IWORK is INTEGER array, dimension (2*(N-1))
If JOB = 'E', IWORK is not referenced.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value