GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
syconvf(3) LAPACK syconvf(3)

syconvf - syconvf: convert to/from hetrf to hetrf_rk format


subroutine csyconvf (uplo, way, n, a, lda, e, ipiv, info)
CSYCONVF subroutine dsyconvf (uplo, way, n, a, lda, e, ipiv, info)
DSYCONVF subroutine ssyconvf (uplo, way, n, a, lda, e, ipiv, info)
SSYCONVF subroutine zsyconvf (uplo, way, n, a, lda, e, ipiv, info)
ZSYCONVF

CSYCONVF

Purpose:


If parameter WAY = 'C':
CSYCONVF converts the factorization output format used in
CSYTRF provided on entry in parameter A into the factorization
output format used in CSYTRF_RK (or CSYTRF_BK) that is stored
on exit in parameters A and E. It also converts in place details of
the interchanges stored in IPIV from the format used in CSYTRF into
the format used in CSYTRF_RK (or CSYTRF_BK).
If parameter WAY = 'R':
CSYCONVF performs the conversion in reverse direction, i.e.
converts the factorization output format used in CSYTRF_RK
(or CSYTRF_BK) provided on entry in parameters A and E into
the factorization output format used in CSYTRF that is stored
on exit in parameter A. It also converts in place details of
the interchanges stored in IPIV from the format used in CSYTRF_RK
(or CSYTRF_BK) into the format used in CSYTRF.
CSYCONVF can also convert in Hermitian matrix case, i.e. between
formats used in CHETRF and CHETRF_RK (or CHETRF_BK).

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix A.
= 'U': Upper triangular
= 'L': Lower triangular

WAY


WAY is CHARACTER*1
= 'C': Convert
= 'R': Revert

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX array, dimension (LDA,N)
1) If WAY ='C':
On entry, contains factorization details in format used in
CSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.
On exit, contains factorization details in format used in
CSYTRF_RK or CSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
2) If WAY = 'R':
On entry, contains factorization details in format used in
CSYTRF_RK or CSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
On exit, contains factorization details in format used in
CSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

E


E is COMPLEX array, dimension (N)
1) If WAY ='C':
On entry, just a workspace.
On exit, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
2) If WAY = 'R':
On entry, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
On exit, is not changed

IPIV


IPIV is INTEGER array, dimension (N)
1) If WAY ='C':
On entry, details of the interchanges and the block
structure of D in the format used in CSYTRF.
On exit, details of the interchanges and the block
structure of D in the format used in CSYTRF_RK
( or CSYTRF_BK).
1) If WAY ='R':
On entry, details of the interchanges and the block
structure of D in the format used in CSYTRF_RK
( or CSYTRF_BK).
On exit, details of the interchanges and the block
structure of D in the format used in CSYTRF.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


November 2017, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley

Definition at line 208 of file csyconvf.f.

DSYCONVF

Purpose:


If parameter WAY = 'C':
DSYCONVF converts the factorization output format used in
DSYTRF provided on entry in parameter A into the factorization
output format used in DSYTRF_RK (or DSYTRF_BK) that is stored
on exit in parameters A and E. It also converts in place details of
the interchanges stored in IPIV from the format used in DSYTRF into
the format used in DSYTRF_RK (or DSYTRF_BK).
If parameter WAY = 'R':
DSYCONVF performs the conversion in reverse direction, i.e.
converts the factorization output format used in DSYTRF_RK
(or DSYTRF_BK) provided on entry in parameters A and E into
the factorization output format used in DSYTRF that is stored
on exit in parameter A. It also converts in place details of
the interchanges stored in IPIV from the format used in DSYTRF_RK
(or DSYTRF_BK) into the format used in DSYTRF.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix A.
= 'U': Upper triangular
= 'L': Lower triangular

WAY


WAY is CHARACTER*1
= 'C': Convert
= 'R': Revert

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
1) If WAY ='C':
On entry, contains factorization details in format used in
DSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.
On exit, contains factorization details in format used in
DSYTRF_RK or DSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
2) If WAY = 'R':
On entry, contains factorization details in format used in
DSYTRF_RK or DSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
On exit, contains factorization details in format used in
DSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

E


E is DOUBLE PRECISION array, dimension (N)
1) If WAY ='C':
On entry, just a workspace.
On exit, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
2) If WAY = 'R':
On entry, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
On exit, is not changed

IPIV


IPIV is INTEGER array, dimension (N)
1) If WAY ='C':
On entry, details of the interchanges and the block
structure of D in the format used in DSYTRF.
On exit, details of the interchanges and the block
structure of D in the format used in DSYTRF_RK
( or DSYTRF_BK).
1) If WAY ='R':
On entry, details of the interchanges and the block
structure of D in the format used in DSYTRF_RK
( or DSYTRF_BK).
On exit, details of the interchanges and the block
structure of D in the format used in DSYTRF.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


November 2017, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley

Definition at line 205 of file dsyconvf.f.

SSYCONVF

Purpose:


If parameter WAY = 'C':
SSYCONVF converts the factorization output format used in
SSYTRF provided on entry in parameter A into the factorization
output format used in SSYTRF_RK (or SSYTRF_BK) that is stored
on exit in parameters A and E. It also converts in place details of
the interchanges stored in IPIV from the format used in SSYTRF into
the format used in SSYTRF_RK (or SSYTRF_BK).
If parameter WAY = 'R':
SSYCONVF performs the conversion in reverse direction, i.e.
converts the factorization output format used in SSYTRF_RK
(or SSYTRF_BK) provided on entry in parameters A and E into
the factorization output format used in SSYTRF that is stored
on exit in parameter A. It also converts in place details of
the interchanges stored in IPIV from the format used in SSYTRF_RK
(or SSYTRF_BK) into the format used in SSYTRF.

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix A.
= 'U': Upper triangular
= 'L': Lower triangular

WAY


WAY is CHARACTER*1
= 'C': Convert
= 'R': Revert

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is REAL array, dimension (LDA,N)
1) If WAY ='C':
On entry, contains factorization details in format used in
SSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.
On exit, contains factorization details in format used in
SSYTRF_RK or SSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
2) If WAY = 'R':
On entry, contains factorization details in format used in
SSYTRF_RK or SSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
On exit, contains factorization details in format used in
SSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

E


E is REAL array, dimension (N)
1) If WAY ='C':
On entry, just a workspace.
On exit, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
2) If WAY = 'R':
On entry, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
On exit, is not changed

IPIV


IPIV is INTEGER array, dimension (N)
1) If WAY ='C':
On entry, details of the interchanges and the block
structure of D in the format used in SSYTRF.
On exit, details of the interchanges and the block
structure of D in the format used in SSYTRF_RK
( or SSYTRF_BK).
1) If WAY ='R':
On entry, details of the interchanges and the block
structure of D in the format used in SSYTRF_RK
( or SSYTRF_BK).
On exit, details of the interchanges and the block
structure of D in the format used in SSYTRF.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


November 2017, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley

Definition at line 205 of file ssyconvf.f.

ZSYCONVF

Purpose:


If parameter WAY = 'C':
ZSYCONVF converts the factorization output format used in
ZSYTRF provided on entry in parameter A into the factorization
output format used in ZSYTRF_RK (or ZSYTRF_BK) that is stored
on exit in parameters A and E. It also converts in place details of
the interchanges stored in IPIV from the format used in ZSYTRF into
the format used in ZSYTRF_RK (or ZSYTRF_BK).
If parameter WAY = 'R':
ZSYCONVF performs the conversion in reverse direction, i.e.
converts the factorization output format used in ZSYTRF_RK
(or ZSYTRF_BK) provided on entry in parameters A and E into
the factorization output format used in ZSYTRF that is stored
on exit in parameter A. It also converts in place details of
the interchanges stored in IPIV from the format used in ZSYTRF_RK
(or ZSYTRF_BK) into the format used in ZSYTRF.
ZSYCONVF can also convert in Hermitian matrix case, i.e. between
formats used in ZHETRF and ZHETRF_RK (or ZHETRF_BK).

Parameters

UPLO


UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix A.
= 'U': Upper triangular
= 'L': Lower triangular

WAY


WAY is CHARACTER*1
= 'C': Convert
= 'R': Revert

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
1) If WAY ='C':
On entry, contains factorization details in format used in
ZSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.
On exit, contains factorization details in format used in
ZSYTRF_RK or ZSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
2) If WAY = 'R':
On entry, contains factorization details in format used in
ZSYTRF_RK or ZSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
are stored on exit in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
On exit, contains factorization details in format used in
ZSYTRF:
a) all elements of the symmetric block diagonal
matrix D on the diagonal of A and on superdiagonal
(or subdiagonal) of A, and
b) If UPLO = 'U': multipliers used to obtain factor U
in the superdiagonal part of A.
If UPLO = 'L': multipliers used to obtain factor L
in the superdiagonal part of A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

E


E is COMPLEX*16 array, dimension (N)
1) If WAY ='C':
On entry, just a workspace.
On exit, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
2) If WAY = 'R':
On entry, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
On exit, is not changed

IPIV


IPIV is INTEGER array, dimension (N)
1) If WAY ='C':
On entry, details of the interchanges and the block
structure of D in the format used in ZSYTRF.
On exit, details of the interchanges and the block
structure of D in the format used in ZSYTRF_RK
( or ZSYTRF_BK).
1) If WAY ='R':
On entry, details of the interchanges and the block
structure of D in the format used in ZSYTRF_RK
( or ZSYTRF_BK).
On exit, details of the interchanges and the block
structure of D in the format used in ZSYTRF.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:


November 2017, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley

Definition at line 208 of file zsyconvf.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:36 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.