GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
tgexc(3) LAPACK tgexc(3)

tgexc - tgexc: reorder generalized Schur form


subroutine ctgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, info)
CTGEXC subroutine dtgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, work, lwork, info)
DTGEXC subroutine stgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, work, lwork, info)
STGEXC subroutine ztgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, info)
ZTGEXC

CTGEXC

Purpose:


CTGEXC reorders the generalized Schur decomposition of a complex
matrix pair (A,B), using an unitary equivalence transformation
(A, B) := Q * (A, B) * Z**H, so that the diagonal block of (A, B) with
row index IFST is moved to row ILST.
(A, B) must be in generalized Schur canonical form, that is, A and
B are both upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H
Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H

Parameters

WANTQ


WANTQ is LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.

WANTZ


WANTZ is LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.

N


N is INTEGER
The order of the matrices A and B. N >= 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the upper triangular matrix A in the pair (A, B).
On exit, the updated matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

B


B is COMPLEX array, dimension (LDB,N)
On entry, the upper triangular matrix B in the pair (A, B).
On exit, the updated matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

Q


Q is COMPLEX array, dimension (LDQ,N)
On entry, if WANTQ = .TRUE., the unitary matrix Q.
On exit, the updated matrix Q.
If WANTQ = .FALSE., Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q. LDQ >= 1;
If WANTQ = .TRUE., LDQ >= N.

Z


Z is COMPLEX array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., the unitary matrix Z.
On exit, the updated matrix Z.
If WANTZ = .FALSE., Z is not referenced.

LDZ


LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1;
If WANTZ = .TRUE., LDZ >= N.

IFST


IFST is INTEGER

ILST


ILST is INTEGER
Specify the reordering of the diagonal blocks of (A, B).
The block with row index IFST is moved to row ILST, by a
sequence of swapping between adjacent blocks.

INFO


INFO is INTEGER
=0: Successful exit.
<0: if INFO = -i, the i-th argument had an illegal value.
=1: The transformed matrix pair (A, B) would be too far
from generalized Schur form; the problem is ill-
conditioned. (A, B) may have been partially reordered,
and ILST points to the first row of the current
position of the block being moved.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

References:

[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.

Definition at line 198 of file ctgexc.f.

DTGEXC

Purpose:


DTGEXC reorders the generalized real Schur decomposition of a real
matrix pair (A,B) using an orthogonal equivalence transformation
(A, B) = Q * (A, B) * Z**T,
so that the diagonal block of (A, B) with row index IFST is moved
to row ILST.
(A, B) must be in generalized real Schur canonical form (as returned
by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
diagonal blocks. B is upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T
Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T

Parameters

WANTQ


WANTQ is LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.

WANTZ


WANTZ is LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.

N


N is INTEGER
The order of the matrices A and B. N >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the matrix A in generalized real Schur canonical
form.
On exit, the updated matrix A, again in generalized
real Schur canonical form.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

B


B is DOUBLE PRECISION array, dimension (LDB,N)
On entry, the matrix B in generalized real Schur canonical
form (A,B).
On exit, the updated matrix B, again in generalized
real Schur canonical form (A,B).

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

Q


Q is DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
On exit, the updated matrix Q.
If WANTQ = .FALSE., Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N.

Z


Z is DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., the orthogonal matrix Z.
On exit, the updated matrix Z.
If WANTZ = .FALSE., Z is not referenced.

LDZ


LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N.

IFST


IFST is INTEGER

ILST


ILST is INTEGER
Specify the reordering of the diagonal blocks of (A, B).
The block with row index IFST is moved to row ILST, by a
sequence of swapping between adjacent blocks.
On exit, if IFST pointed on entry to the second row of
a 2-by-2 block, it is changed to point to the first row;
ILST always points to the first row of the block in its
final position (which may differ from its input value by
+1 or -1). 1 <= IFST, ILST <= N.

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
=0: successful exit.
<0: if INFO = -i, the i-th argument had an illegal value.
=1: The transformed matrix pair (A, B) would be too far
from generalized Schur form; the problem is ill-
conditioned. (A, B) may have been partially reordered,
and ILST points to the first row of the current
position of the block being moved.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

References:


[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.

Definition at line 218 of file dtgexc.f.

STGEXC

Purpose:


STGEXC reorders the generalized real Schur decomposition of a real
matrix pair (A,B) using an orthogonal equivalence transformation
(A, B) = Q * (A, B) * Z**T,
so that the diagonal block of (A, B) with row index IFST is moved
to row ILST.
(A, B) must be in generalized real Schur canonical form (as returned
by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
diagonal blocks. B is upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T
Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T

Parameters

WANTQ


WANTQ is LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.

WANTZ


WANTZ is LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.

N


N is INTEGER
The order of the matrices A and B. N >= 0.

A


A is REAL array, dimension (LDA,N)
On entry, the matrix A in generalized real Schur canonical
form.
On exit, the updated matrix A, again in generalized
real Schur canonical form.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

B


B is REAL array, dimension (LDB,N)
On entry, the matrix B in generalized real Schur canonical
form (A,B).
On exit, the updated matrix B, again in generalized
real Schur canonical form (A,B).

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

Q


Q is REAL array, dimension (LDQ,N)
On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
On exit, the updated matrix Q.
If WANTQ = .FALSE., Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N.

Z


Z is REAL array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., the orthogonal matrix Z.
On exit, the updated matrix Z.
If WANTZ = .FALSE., Z is not referenced.

LDZ


LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N.

IFST


IFST is INTEGER

ILST


ILST is INTEGER
Specify the reordering of the diagonal blocks of (A, B).
The block with row index IFST is moved to row ILST, by a
sequence of swapping between adjacent blocks.
On exit, if IFST pointed on entry to the second row of
a 2-by-2 block, it is changed to point to the first row;
ILST always points to the first row of the block in its
final position (which may differ from its input value by
+1 or -1). 1 <= IFST, ILST <= N.

WORK


WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
=0: successful exit.
<0: if INFO = -i, the i-th argument had an illegal value.
=1: The transformed matrix pair (A, B) would be too far
from generalized Schur form; the problem is ill-
conditioned. (A, B) may have been partially reordered,
and ILST points to the first row of the current
position of the block being moved.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

References:


[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.

Definition at line 218 of file stgexc.f.

ZTGEXC

Purpose:


ZTGEXC reorders the generalized Schur decomposition of a complex
matrix pair (A,B), using an unitary equivalence transformation
(A, B) := Q * (A, B) * Z**H, so that the diagonal block of (A, B) with
row index IFST is moved to row ILST.
(A, B) must be in generalized Schur canonical form, that is, A and
B are both upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H
Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H

Parameters

WANTQ


WANTQ is LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.

WANTZ


WANTZ is LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.

N


N is INTEGER
The order of the matrices A and B. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the upper triangular matrix A in the pair (A, B).
On exit, the updated matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

B


B is COMPLEX*16 array, dimension (LDB,N)
On entry, the upper triangular matrix B in the pair (A, B).
On exit, the updated matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

Q


Q is COMPLEX*16 array, dimension (LDQ,N)
On entry, if WANTQ = .TRUE., the unitary matrix Q.
On exit, the updated matrix Q.
If WANTQ = .FALSE., Q is not referenced.

LDQ


LDQ is INTEGER
The leading dimension of the array Q. LDQ >= 1;
If WANTQ = .TRUE., LDQ >= N.

Z


Z is COMPLEX*16 array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., the unitary matrix Z.
On exit, the updated matrix Z.
If WANTZ = .FALSE., Z is not referenced.

LDZ


LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1;
If WANTZ = .TRUE., LDZ >= N.

IFST


IFST is INTEGER

ILST


ILST is INTEGER
Specify the reordering of the diagonal blocks of (A, B).
The block with row index IFST is moved to row ILST, by a
sequence of swapping between adjacent blocks.

INFO


INFO is INTEGER
=0: Successful exit.
<0: if INFO = -i, the i-th argument had an illegal value.
=1: The transformed matrix pair (A, B) would be too far
from generalized Schur form; the problem is ill-
conditioned. (A, B) may have been partially reordered,
and ILST points to the first row of the current
position of the block being moved.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

References:

[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996.
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.

Definition at line 198 of file ztgexc.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:37 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.