GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
tprfs(3) LAPACK tprfs(3)

tprfs - tprfs: triangular iterative refinement


subroutine ctprfs (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CTPRFS subroutine dtprfs (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, iwork, info)
DTPRFS subroutine stprfs (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, iwork, info)
STPRFS subroutine ztprfs (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZTPRFS

CTPRFS

Purpose:


CTPRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular packed
coefficient matrix.
The solution matrix X must be computed by CTPTRS or some other
means before entering this routine. CTPRFS does not do iterative
refinement because doing so cannot improve the backward error.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.

TRANS


TRANS is CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose)

DIAG


DIAG is CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.

AP


AP is COMPLEX array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.

B


B is COMPLEX array, dimension (LDB,NRHS)
The right hand side matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

X


X is COMPLEX array, dimension (LDX,NRHS)
The solution matrix X.

LDX


LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).

FERR


FERR is REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.

BERR


BERR is REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

WORK


WORK is COMPLEX array, dimension (2*N)

RWORK


RWORK is REAL array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 172 of file ctprfs.f.

DTPRFS

Purpose:


DTPRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular packed
coefficient matrix.
The solution matrix X must be computed by DTPTRS or some other
means before entering this routine. DTPRFS does not do iterative
refinement because doing so cannot improve the backward error.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.

TRANS


TRANS is CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)

DIAG


DIAG is CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.

AP


AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.

B


B is DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

X


X is DOUBLE PRECISION array, dimension (LDX,NRHS)
The solution matrix X.

LDX


LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).

FERR


FERR is DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.

BERR


BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

WORK


WORK is DOUBLE PRECISION array, dimension (3*N)

IWORK


IWORK is INTEGER array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 173 of file dtprfs.f.

STPRFS

Purpose:


STPRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular packed
coefficient matrix.
The solution matrix X must be computed by STPTRS or some other
means before entering this routine. STPRFS does not do iterative
refinement because doing so cannot improve the backward error.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.

TRANS


TRANS is CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)

DIAG


DIAG is CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.

AP


AP is REAL array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.

B


B is REAL array, dimension (LDB,NRHS)
The right hand side matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

X


X is REAL array, dimension (LDX,NRHS)
The solution matrix X.

LDX


LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).

FERR


FERR is REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.

BERR


BERR is REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

WORK


WORK is REAL array, dimension (3*N)

IWORK


IWORK is INTEGER array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 173 of file stprfs.f.

ZTPRFS

Purpose:


ZTPRFS provides error bounds and backward error estimates for the
solution to a system of linear equations with a triangular packed
coefficient matrix.
The solution matrix X must be computed by ZTPTRS or some other
means before entering this routine. ZTPRFS does not do iterative
refinement because doing so cannot improve the backward error.

Parameters

UPLO


UPLO is CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.

TRANS


TRANS is CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose)

DIAG


DIAG is CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.

AP


AP is COMPLEX*16 array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.

B


B is COMPLEX*16 array, dimension (LDB,NRHS)
The right hand side matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

X


X is COMPLEX*16 array, dimension (LDX,NRHS)
The solution matrix X.

LDX


LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).

FERR


FERR is DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.

BERR


BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

WORK


WORK is COMPLEX*16 array, dimension (2*N)

RWORK


RWORK is DOUBLE PRECISION array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 172 of file ztprfs.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:36 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.