 |
|
| |
unmtr - {un,or}mtr: multiply by Q from hetrd
subroutine cunmtr (side, uplo, trans, m, n, a, lda, tau, c,
ldc, work, lwork, info)
CUNMTR subroutine dormtr (side, uplo, trans, m, n, a, lda, tau,
c, ldc, work, lwork, info)
DORMTR subroutine sormtr (side, uplo, trans, m, n, a, lda, tau,
c, ldc, work, lwork, info)
SORMTR subroutine zunmtr (side, uplo, trans, m, n, a, lda, tau,
c, ldc, work, lwork, info)
ZUNMTR
CUNMTR
Purpose:
CUNMTR overwrites the general complex M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'C': Q**H * C C * Q**H
where Q is a complex unitary matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
nq-1 elementary reflectors, as returned by CHETRD:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Parameters
SIDE
SIDE is CHARACTER*1
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A contains elementary reflectors
from CHETRD;
= 'L': Lower triangle of A contains elementary reflectors
from CHETRD.
TRANS
TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'C': Conjugate transpose, apply Q**H.
M
M is INTEGER
The number of rows of the matrix C. M >= 0.
N
N is INTEGER
The number of columns of the matrix C. N >= 0.
A
A is COMPLEX array, dimension
(LDA,M) if SIDE = 'L'
(LDA,N) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by CHETRD.
LDA
LDA is INTEGER
The leading dimension of the array A.
LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU
TAU is COMPLEX array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by CHETRD.
C
C is COMPLEX array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDC
LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >=M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 170 of file cunmtr.f.
DORMTR
Purpose:
DORMTR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
nq-1 elementary reflectors, as returned by DSYTRD:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Parameters
SIDE
SIDE is CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A contains elementary reflectors
from DSYTRD;
= 'L': Lower triangle of A contains elementary reflectors
from DSYTRD.
TRANS
TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M
M is INTEGER
The number of rows of the matrix C. M >= 0.
N
N is INTEGER
The number of columns of the matrix C. N >= 0.
A
A is DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L'
(LDA,N) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by DSYTRD.
LDA
LDA is INTEGER
The leading dimension of the array A.
LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU
TAU is DOUBLE PRECISION array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DSYTRD.
C
C is DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 169 of file dormtr.f.
SORMTR
Purpose:
SORMTR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
nq-1 elementary reflectors, as returned by SSYTRD:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Parameters
SIDE
SIDE is CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A contains elementary reflectors
from SSYTRD;
= 'L': Lower triangle of A contains elementary reflectors
from SSYTRD.
TRANS
TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M
M is INTEGER
The number of rows of the matrix C. M >= 0.
N
N is INTEGER
The number of columns of the matrix C. N >= 0.
A
A is REAL array, dimension
(LDA,M) if SIDE = 'L'
(LDA,N) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by SSYTRD.
LDA
LDA is INTEGER
The leading dimension of the array A.
LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU
TAU is REAL array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SSYTRD.
C
C is REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 170 of file sormtr.f.
ZUNMTR
Purpose:
ZUNMTR overwrites the general complex M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'C': Q**H * C C * Q**H
where Q is a complex unitary matrix of order nq, with nq = m if
SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
nq-1 elementary reflectors, as returned by ZHETRD:
if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
Parameters
SIDE
SIDE is CHARACTER*1
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A contains elementary reflectors
from ZHETRD;
= 'L': Lower triangle of A contains elementary reflectors
from ZHETRD.
TRANS
TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'C': Conjugate transpose, apply Q**H.
M
M is INTEGER
The number of rows of the matrix C. M >= 0.
N
N is INTEGER
The number of columns of the matrix C. N >= 0.
A
A is COMPLEX*16 array, dimension
(LDA,M) if SIDE = 'L'
(LDA,N) if SIDE = 'R'
The vectors which define the elementary reflectors, as
returned by ZHETRD.
LDA
LDA is INTEGER
The leading dimension of the array A.
LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU
TAU is COMPLEX*16 array, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ZHETRD.
C
C is COMPLEX*16 array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDC
LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >=M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 169 of file zunmtr.f.
Generated automatically by Doxygen for LAPACK from the source
code.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|