|
NAMElmmin - Levenberg-Marquardt least-squares minimization (simple/legacy API without error estimates) SYNOPSIS#include <lmmin.h> void lmmin( const int n_par, double
*par, const int m_dat,
extern const lm_control_struct lm_control_double; extern const lm_control_struct lm_control_float; extern const char *lm_infmsg[]; extern const char *lm_shortmsg[]; DESCRIPTIONlmmin() determines a vector par that minimizes the sum of squared elements of fvec-y. The vector fvec is computed by a user-supplied function evaluate(); the vector y contains user-provided values. On success, par represents a local minimum, not necessarily a global one; it may depend on its starting value. This is a simple wrapper of the function lmmin2(3), which also returns error estimates. Conversely, the function lmcurve(3) provides an even simpler wrapper, for use in curve fitting. The Levenberg-Marquardt minimization starts with a steepest-descent exploration of the parameter space, and achieves rapid convergence by crossing over into the Newton-Gauss method. Function arguments:
NOTESInitializing parameter records.The parameter record control should always be initialized from supplied default records: lm_control_struct control = lm_control_double; /* or _float */ After this, parameters may be overwritten: control.patience = 500; /* allow more iterations */
control.verbosity = 15; /* for verbose monitoring */
An application written this way is guaranteed to work even if new parameters are added to lm_control_struct. Conversely, addition of parameters is not considered an API change; it may happen without increment of the major version number. EXAMPLESFitting a surfaceFit a data set y(t) by a function f(t;p) where t is a two-dimensional vector: #include "lmmin.h"
#include <stdio.h>
/* fit model: a plane p0 + p1*tx + p2*tz */
double f( double tx, double tz, const double *p )
{
return p[0] + p[1]*tx + p[2]*tz;
}
/* data structure to transmit data arays and fit model */
typedef struct {
double *tx, *tz;
double *y;
double (*f)( double tx, double tz, const double *p );
} data_struct;
/* function evaluation, determination of residues */
void evaluate_surface( const double *par, int m_dat,
const void *data, double *fvec, int *userbreak )
{
/* for readability, explicit type conversion */
data_struct *D;
D = (data_struct*)data;
int i;
for ( i = 0; i < m_dat; i++ )
fvec[i] = D->y[i] - D->f( D->tx[i], D->tz[i], par );
}
int main()
{
/* parameter vector */
int n_par = 3; /* number of parameters in model function f */
double par[3] = { -1, 0, 1 }; /* arbitrary starting value */
/* data points */
int m_dat = 4;
double tx[4] = { -1, -1, 1, 1 };
double tz[4] = { -1, 1, -1, 1 };
double y[4] = { 0, 1, 1, 2 };
data_struct data = { tx, tz, y, f };
/* auxiliary parameters */
lm_status_struct status;
lm_control_struct control = lm_control_double;
control.verbosity = 3;
/* perform the fit */
printf( "Fitting:\n" );
lmmin( n_par, par, m_dat, (const void*) &data, evaluate_surface,
&control, &status );
/* print results */
printf( "\nResults:\n" );
printf( "status after %d function evaluations:\n %s\n",
status.nfev, lm_infmsg[status.outcome] );
printf("obtained parameters:\n");
int i;
for ( i=0; i<n_par; ++i )
printf(" par[%i] = %12g\n", i, par[i]);
printf("obtained norm:\n %12g\n", status.fnorm );
printf("fitting data as follows:\n");
double ff;
for ( i=0; i<m_dat; ++i ){
ff = f(tx[i], tz[i], par);
printf( " t[%2d]=%12g,%12g y=%12g fit=%12g residue=%12g\n",
i, tx[i], tz[i], y[i], ff, y[i] - ff );
}
return 0;
}
More examplesFor more examples, see the homepage and directories demo/ and test/ in the source distribution. COPYINGCopyright (C):
Software: FreeBSD License Documentation: Creative Commons Attribution Share Alike SEE ALSOlmmin2(3), lmcurve(3) Homepage: https://jugit.fz-juelich.de/mlz/lmfit BUGSPlease send bug reports and suggestions to the author <j.wuttke@fz-juelich.de>.
|