GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
SRC/zgetc2.f(3) LAPACK SRC/zgetc2.f(3)

SRC/zgetc2.f


subroutine zgetc2 (n, a, lda, ipiv, jpiv, info)
ZGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.

ZGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.

Purpose:


ZGETC2 computes an LU factorization, using complete pivoting, of the
n-by-n matrix A. The factorization has the form A = P * L * U * Q,
where P and Q are permutation matrices, L is lower triangular with
unit diagonal elements and U is upper triangular.
This is a level 1 BLAS version of the algorithm.

Parameters

N


N is INTEGER
The order of the matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA, N)
On entry, the n-by-n matrix to be factored.
On exit, the factors L and U from the factorization
A = P*L*U*Q; the unit diagonal elements of L are not stored.
If U(k, k) appears to be less than SMIN, U(k, k) is given the
value of SMIN, giving a nonsingular perturbed system.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1, N).

IPIV


IPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).

JPIV


JPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).

INFO


INFO is INTEGER
= 0: successful exit
> 0: if INFO = k, U(k, k) is likely to produce overflow if
one tries to solve for x in Ax = b. So U is perturbed
to avoid the overflow.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

Definition at line 110 of file zgetc2.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:32 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.