JOBU
          JOBU is CHARACTER*1
          = 'U':  Unitary matrix U is computed;
          = 'N':  U is not computed.
JOBV
          JOBV is CHARACTER*1
          = 'V':  Unitary matrix V is computed;
          = 'N':  V is not computed.
JOBQ
          JOBQ is CHARACTER*1
          = 'Q':  Unitary matrix Q is computed;
          = 'N':  Q is not computed.
M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
P
          P is INTEGER
          The number of rows of the matrix B.  P >= 0.
N
          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.
A
          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A contains the triangular (or trapezoidal) matrix
          described in the Purpose section.
LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).
B
          B is COMPLEX*16 array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, B contains the triangular matrix described in
          the Purpose section.
LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).
TOLA
          TOLA is DOUBLE PRECISION
TOLB
          TOLB is DOUBLE PRECISION
          TOLA and TOLB are the thresholds to determine the effective
          numerical rank of matrix B and a subblock of A. Generally,
          they are set to
             TOLA = MAX(M,N)*norm(A)*MAZHEPS,
             TOLB = MAX(P,N)*norm(B)*MAZHEPS.
          The size of TOLA and TOLB may affect the size of backward
          errors of the decomposition.
K
          K is INTEGER
L
          L is INTEGER
          On exit, K and L specify the dimension of the subblocks
          described in Purpose section.
          K + L = effective numerical rank of (A**H,B**H)**H.
U
          U is COMPLEX*16 array, dimension (LDU,M)
          If JOBU = 'U', U contains the unitary matrix U.
          If JOBU = 'N', U is not referenced.
LDU
          LDU is INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if
          JOBU = 'U'; LDU >= 1 otherwise.
V
          V is COMPLEX*16 array, dimension (LDV,P)
          If JOBV = 'V', V contains the unitary matrix V.
          If JOBV = 'N', V is not referenced.
LDV
          LDV is INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if
          JOBV = 'V'; LDV >= 1 otherwise.
Q
          Q is COMPLEX*16 array, dimension (LDQ,N)
          If JOBQ = 'Q', Q contains the unitary matrix Q.
          If JOBQ = 'N', Q is not referenced.
LDQ
          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if
          JOBQ = 'Q'; LDQ >= 1 otherwise.
IWORK
          IWORK is INTEGER array, dimension (N)
RWORK
          RWORK is DOUBLE PRECISION array, dimension (2*N)
TAU
          TAU is COMPLEX*16 array, dimension (N)
WORK
          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.