GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
zhegvd.f(3) LAPACK zhegvd.f(3)

zhegvd.f -


subroutine zhegvd (ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)
 
ZHEGST

ZHEGST
Purpose:
 ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors
 of a complex generalized Hermitian-definite eigenproblem, of the form
 A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
 B are assumed to be Hermitian and B is also positive definite.
 If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
Parameters:
ITYPE
          ITYPE is INTEGER
          Specifies the problem type to be solved:
          = 1:  A*x = (lambda)*B*x
          = 2:  A*B*x = (lambda)*x
          = 3:  B*A*x = (lambda)*x
JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangles of A and B are stored;
          = 'L':  Lower triangles of A and B are stored.
N
          N is INTEGER
          The order of the matrices A and B.  N >= 0.
A
          A is COMPLEX*16 array, dimension (LDA, N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the
          leading N-by-N upper triangular part of A contains the
          upper triangular part of the matrix A.  If UPLO = 'L',
          the leading N-by-N lower triangular part of A contains
          the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the matrix Z of eigenvectors. The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I. If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') or the lower triangle (if UPLO='L') of A, including the diagonal, is destroyed.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
B
          B is COMPLEX*16 array, dimension (LDB, N)
          On entry, the Hermitian matrix B.  If UPLO = 'U', the
          leading N-by-N upper triangular part of B contains the
          upper triangular part of the matrix B.  If UPLO = 'L',
          the leading N-by-N lower triangular part of B contains
          the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is overwritten by the triangular factor U or L from the Cholesky factorization B = U**H*U or B = L*L**H.
LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
W
          W is DOUBLE PRECISION array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
WORK
          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The length of the array WORK.
          If N <= 1,                LWORK >= 1.
          If JOBZ  = 'N' and N > 1, LWORK >= N + 1.
          If JOBZ  = 'V' and N > 1, LWORK >= 2*N + N**2.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
LRWORK
          LRWORK is INTEGER
          The dimension of the array RWORK.
          If N <= 1,                LRWORK >= 1.
          If JOBZ  = 'N' and N > 1, LRWORK >= N.
          If JOBZ  = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
LIWORK
          LIWORK is INTEGER
          The dimension of the array IWORK.
          If N <= 1,                LIWORK >= 1.
          If JOBZ  = 'N' and N > 1, LIWORK >= 1.
          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  ZPOTRF or ZHEEVD returned an error code:
             <= N:  if INFO = i and JOBZ = 'N', then the algorithm
                    failed to converge; i off-diagonal elements of an
                    intermediate tridiagonal form did not converge to
                    zero;
                    if INFO = i and JOBZ = 'V', then the algorithm
                    failed to compute an eigenvalue while working on
                    the submatrix lying in rows and columns INFO/(N+1)
                    through mod(INFO,N+1);
             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
                    minor of order i of B is not positive definite.
                    The factorization of B could not be completed and
                    no eigenvalues or eigenvectors were computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  Modified so that no backsubstitution is performed if ZHEEVD fails to
  converge (NEIG in old code could be greater than N causing out of
  bounds reference to A - reported by Ralf Meyer).  Also corrected the
  description of INFO and the test on ITYPE. Sven, 16 Feb 05.
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
Definition at line 249 of file zhegvd.f.

Generated automatically by Doxygen for LAPACK from the source code.
Sat Nov 16 2013 Version 3.4.2

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.