GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
zhetrd.f(3) LAPACK zhetrd.f(3)

zhetrd.f -


subroutine zhetrd (UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)
 
ZHETRD

ZHETRD
Purpose:
 ZHETRD reduces a complex Hermitian matrix A to real symmetric
 tridiagonal form T by a unitary similarity transformation:
 Q**H * A * Q = T.
Parameters:
UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
N
          N is INTEGER
          The order of the matrix A.  N >= 0.
A
          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, if UPLO = 'U', the diagonal and first superdiagonal
          of A are overwritten by the corresponding elements of the
          tridiagonal matrix T, and the elements above the first
          superdiagonal, with the array TAU, represent the unitary
          matrix Q as a product of elementary reflectors; if UPLO
          = 'L', the diagonal and first subdiagonal of A are over-
          written by the corresponding elements of the tridiagonal
          matrix T, and the elements below the first subdiagonal, with
          the array TAU, represent the unitary matrix Q as a product
          of elementary reflectors. See Further Details.
LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
D
          D is DOUBLE PRECISION array, dimension (N)
          The diagonal elements of the tridiagonal matrix T:
          D(i) = A(i,i).
E
          E is DOUBLE PRECISION array, dimension (N-1)
          The off-diagonal elements of the tridiagonal matrix T:
          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU
          TAU is COMPLEX*16 array, dimension (N-1)
          The scalar factors of the elementary reflectors (see Further
          Details).
WORK
          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
          LWORK is INTEGER
          The dimension of the array WORK.  LWORK >= 1.
          For optimum performance LWORK >= N*NB, where NB is the
          optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
  If UPLO = 'U', the matrix Q is represented as a product of elementary
  reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in A(1:i-1,i+1), and tau in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), and tau in TAU(i).
The contents of A on exit are illustrated by the following examples with n = 5:
if UPLO = 'U': if UPLO = 'L':
( d e v2 v3 v4 ) ( d ) ( d e v3 v4 ) ( e d ) ( d e v4 ) ( v1 e d ) ( d e ) ( v1 v2 e d ) ( d ) ( v1 v2 v3 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the vector defining H(i).
Definition at line 193 of file zhetrd.f.

Generated automatically by Doxygen for LAPACK from the source code.
Sat Nov 16 2013 Version 3.4.2

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.