
NAMEzhpgvx.f SYNOPSISFunctions/Subroutinessubroutine zhpgvx (ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO) Function/Subroutine Documentationsubroutine zhpgvx (integerITYPE, characterJOBZ, characterRANGE, characterUPLO, integerN, complex*16, dimension( * )AP, complex*16, dimension( * )BP, double precisionVL, double precisionVU, integerIL, integerIU, double precisionABSTOL, integerM, double precision, dimension( * )W, complex*16, dimension( ldz, * )Z, integerLDZ, complex*16, dimension( * )WORK, double precision, dimension( * )RWORK, integer, dimension( * )IWORK, integer, dimension( * )IFAIL, integerINFO)ZHPGST Purpose:ZHPGVX computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitiandefinite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian, stored in packed format, and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. ITYPE
Author:
ITYPE is INTEGER Specifies the problem type to be solved: = 1: A*x = (lambda)*B*x = 2: A*B*x = (lambda)*x = 3: B*A*x = (lambda)*xJOBZ JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors.RANGE RANGE is CHARACTER*1 = 'A': all eigenvalues will be found; = 'V': all eigenvalues in the halfopen interval (VL,VU] will be found; = 'I': the ILth through IUth eigenvalues will be found.UPLO UPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored.N N is INTEGER The order of the matrices A and B. N >= 0.AP AP is COMPLEX*16 array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the Hermitian matrix A, packed columnwise in a linear array. The jth column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j1)*(2*nj)/2) = A(i,j) for j<=i<=n. On exit, the contents of AP are destroyed.BP BP is COMPLEX*16 array, dimension (N*(N+1)/2) On entry, the upper or lower triangle of the Hermitian matrix B, packed columnwise in a linear array. The jth column of B is stored in the array BP as follows: if UPLO = 'U', BP(i + (j1)*j/2) = B(i,j) for 1<=i<=j; if UPLO = 'L', BP(i + (j1)*(2*nj)/2) = B(i,j) for j<=i<=n. On exit, the triangular factor U or L from the Cholesky factorization B = U**H*U or B = L*L**H, in the same storage format as B.VL VL is DOUBLE PRECISIONVU VU is DOUBLE PRECISION If RANGE='V', the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.IL IL is INTEGERIU IU is INTEGER If RANGE='I', the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'.ABSTOL ABSTOL is DOUBLE PRECISION The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to ABSTOL + EPS * max( a,b ) , where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*T will be used in its place, where T is the 1norm of the tridiagonal matrix obtained by reducing AP to tridiagonal form. Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*DLAMCH('S'), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*DLAMCH('S').M M is INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = 'A', M = N, and if RANGE = 'I', M = IUIL+1.W W is DOUBLE PRECISION array, dimension (N) On normal exit, the first M elements contain the selected eigenvalues in ascending order.Z Z is COMPLEX*16 array, dimension (LDZ, N) If JOBZ = 'N', then Z is not referenced. If JOBZ = 'V', then if INFO = 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the ith column of Z holding the eigenvector associated with W(i). The eigenvectors are normalized as follows: if ITYPE = 1 or 2, Z**H*B*Z = I; if ITYPE = 3, Z**H*inv(B)*Z = I. If an eigenvector fails to converge, then that column of Z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in IFAIL. Note: the user must ensure that at least max(1,M) columns are supplied in the array Z; if RANGE = 'V', the exact value of M is not known in advance and an upper bound must be used.LDZ LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N).WORK WORK is COMPLEX*16 array, dimension (2*N)RWORK RWORK is DOUBLE PRECISION array, dimension (7*N)IWORK IWORK is INTEGER array, dimension (5*N)IFAIL IFAIL is INTEGER array, dimension (N) If JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL are zero. If INFO > 0, then IFAIL contains the indices of the eigenvectors that failed to converge. If JOBZ = 'N', then IFAIL is not referenced.INFO INFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value > 0: ZPPTRF or ZHPEVX returned an error code: <= N: if INFO = i, ZHPEVX failed to converge; i eigenvectors failed to converge. Their indices are stored in array IFAIL. > N: if INFO = N + i, for 1 <= i <= n, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky,
USA
Definition at line 267 of file zhpgvx.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code.
Visit the GSP FreeBSD Man Page Interface. 