
NAMEzhpr2.f SYNOPSISFunctions/Subroutinessubroutine zhpr2 (UPLO, N, ALPHA, X, INCX, Y, INCY, AP) Function/Subroutine Documentationsubroutine zhpr2 (characterUPLO, integerN, complex*16ALPHA, complex*16, dimension(*)X, integerINCX, complex*16, dimension(*)Y, integerINCY, complex*16, dimension(*)AP)ZHPR2 Purpose:ZHPR2 performs the hermitian rank 2 operation A := alpha*x*y**H + conjg( alpha )*y*x**H + A, where alpha is a scalar, x and y are n element vectors and A is an n by n hermitian matrix, supplied in packed form. UPLO
Author:
UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP.N N is INTEGER On entry, N specifies the order of the matrix A. N must be at least zero.ALPHA ALPHA is COMPLEX*16 On entry, ALPHA specifies the scalar alpha.X X is COMPLEX*16 array of dimension at least ( 1 + ( n  1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x.INCX INCX is INTEGER On entry, INCX specifies the increment for the elements of X. INCX must not be zero.Y Y is COMPLEX*16 array of dimension at least ( 1 + ( n  1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y.INCY INCY is INTEGER On entry, INCY specifies the increment for the elements of Y. INCY must not be zero.AP AP is COMPLEX*16 array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the hermitian matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero. Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Further Details:
Level 2 Blas routine.  Written on 22October1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. AuthorGenerated automatically by Doxygen for LAPACK from the source code.
Visit the GSP FreeBSD Man Page Interface. 