 |
|
| |
SRC/zhptrf.f(3) |
LAPACK |
SRC/zhptrf.f(3) |
subroutine zhptrf (uplo, n, ap, ipiv, info)
ZHPTRF
ZHPTRF
Purpose:
ZHPTRF computes the factorization of a complex Hermitian packed
matrix A using the Bunch-Kaufman diagonal pivoting method:
A = U*D*U**H or A = L*D*L**H
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is Hermitian and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
Parameters
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
AP
AP is COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L, stored as a packed triangular
matrix overwriting A (see below for further details).
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it
is used to solve a system of equations.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
If UPLO = 'U', then A = U*D*U**H, where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L**H, where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
Contributors:
J. Lewis, Boeing Computer Services Company
Definition at line 158 of file zhptrf.f.
Generated automatically by Doxygen for LAPACK from the source
code.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|