GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
SRC/zhsein.f(3) LAPACK SRC/zhsein.f(3)

SRC/zhsein.f


subroutine zhsein (side, eigsrc, initv, select, n, h, ldh, w, vl, ldvl, vr, ldvr, mm, m, work, rwork, ifaill, ifailr, info)
ZHSEIN

ZHSEIN

Purpose:


ZHSEIN uses inverse iteration to find specified right and/or left
eigenvectors of a complex upper Hessenberg matrix H.
The right eigenvector x and the left eigenvector y of the matrix H
corresponding to an eigenvalue w are defined by:
H * x = w * x, y**h * H = w * y**h
where y**h denotes the conjugate transpose of the vector y.

Parameters

SIDE


SIDE is CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.

EIGSRC


EIGSRC is CHARACTER*1
Specifies the source of eigenvalues supplied in W:
= 'Q': the eigenvalues were found using ZHSEQR; thus, if
H has zero subdiagonal elements, and so is
block-triangular, then the j-th eigenvalue can be
assumed to be an eigenvalue of the block containing
the j-th row/column. This property allows ZHSEIN to
perform inverse iteration on just one diagonal block.
= 'N': no assumptions are made on the correspondence
between eigenvalues and diagonal blocks. In this
case, ZHSEIN must always perform inverse iteration
using the whole matrix H.

INITV


INITV is CHARACTER*1
= 'N': no initial vectors are supplied;
= 'U': user-supplied initial vectors are stored in the arrays
VL and/or VR.

SELECT


SELECT is LOGICAL array, dimension (N)
Specifies the eigenvectors to be computed. To select the
eigenvector corresponding to the eigenvalue W(j),
SELECT(j) must be set to .TRUE..

N


N is INTEGER
The order of the matrix H. N >= 0.

H


H is COMPLEX*16 array, dimension (LDH,N)
The upper Hessenberg matrix H.
If a NaN is detected in H, the routine will return with INFO=-6.

LDH


LDH is INTEGER
The leading dimension of the array H. LDH >= max(1,N).

W


W is COMPLEX*16 array, dimension (N)
On entry, the eigenvalues of H.
On exit, the real parts of W may have been altered since
close eigenvalues are perturbed slightly in searching for
independent eigenvectors.

VL


VL is COMPLEX*16 array, dimension (LDVL,MM)
On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
contain starting vectors for the inverse iteration for the
left eigenvectors; the starting vector for each eigenvector
must be in the same column in which the eigenvector will be
stored.
On exit, if SIDE = 'L' or 'B', the left eigenvectors
specified by SELECT will be stored consecutively in the
columns of VL, in the same order as their eigenvalues.
If SIDE = 'R', VL is not referenced.

LDVL


LDVL is INTEGER
The leading dimension of the array VL.
LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.

VR


VR is COMPLEX*16 array, dimension (LDVR,MM)
On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
contain starting vectors for the inverse iteration for the
right eigenvectors; the starting vector for each eigenvector
must be in the same column in which the eigenvector will be
stored.
On exit, if SIDE = 'R' or 'B', the right eigenvectors
specified by SELECT will be stored consecutively in the
columns of VR, in the same order as their eigenvalues.
If SIDE = 'L', VR is not referenced.

LDVR


LDVR is INTEGER
The leading dimension of the array VR.
LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.

MM


MM is INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.

M


M is INTEGER
The number of columns in the arrays VL and/or VR required to
store the eigenvectors (= the number of .TRUE. elements in
SELECT).

WORK


WORK is COMPLEX*16 array, dimension (N*N)

RWORK


RWORK is DOUBLE PRECISION array, dimension (N)

IFAILL


IFAILL is INTEGER array, dimension (MM)
If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
eigenvector in the i-th column of VL (corresponding to the
eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
eigenvector converged satisfactorily.
If SIDE = 'R', IFAILL is not referenced.

IFAILR


IFAILR is INTEGER array, dimension (MM)
If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
eigenvector in the i-th column of VR (corresponding to the
eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
eigenvector converged satisfactorily.
If SIDE = 'L', IFAILR is not referenced.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, i is the number of eigenvectors which
failed to converge; see IFAILL and IFAILR for further
details.

Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:


Each eigenvector is normalized so that the element of largest
magnitude has magnitude 1; here the magnitude of a complex number
(x,y) is taken to be |x|+|y|.

Definition at line 242 of file zhsein.f.

Generated automatically by Doxygen for LAPACK from the source code.

Sun Jan 12 2025 15:13:32 Version 3.12.1

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.