GSP
Quick Navigator

Search Site

Unix VPS
A - Starter
B - Basic
C - Preferred
D - Commercial
MPS - Dedicated
Previous VPSs
* Sign Up! *

Support
Contact Us
Online Help
Handbooks
Domain Status
Man Pages

FAQ
Virtual Servers
Pricing
Billing
Technical

Network
Facilities
Connectivity
Topology Map

Miscellaneous
Server Agreement
Year 2038
Credits
 

USA Flag

 

 

Man Pages
zhseqr.f(3) LAPACK zhseqr.f(3)

zhseqr.f -


subroutine zhseqr (JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ, WORK, LWORK, INFO)
 
ZHSEQR

ZHSEQR
Purpose:
    ZHSEQR computes the eigenvalues of a Hessenberg matrix H
    and, optionally, the matrices T and Z from the Schur decomposition
    H = Z T Z**H, where T is an upper triangular matrix (the
    Schur form), and Z is the unitary matrix of Schur vectors.
Optionally Z may be postmultiplied into an input unitary matrix Q so that this routine can give the Schur factorization of a matrix A which has been reduced to the Hessenberg form H by the unitary matrix Q: A = Q*H*Q**H = (QZ)*T*(QZ)**H.
Parameters:
JOB
          JOB is CHARACTER*1
           = 'E':  compute eigenvalues only;
           = 'S':  compute eigenvalues and the Schur form T.
COMPZ
          COMPZ is CHARACTER*1
           = 'N':  no Schur vectors are computed;
           = 'I':  Z is initialized to the unit matrix and the matrix Z
                   of Schur vectors of H is returned;
           = 'V':  Z must contain an unitary matrix Q on entry, and
                   the product Q*Z is returned.
N
          N is INTEGER
           The order of the matrix H.  N .GE. 0.
ILO
          ILO is INTEGER
IHI
          IHI is INTEGER
It is assumed that H is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to ZGEBAL, and then passed to ZGEHRD when the matrix output by ZGEBAL is reduced to Hessenberg form. Otherwise ILO and IHI should be set to 1 and N respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. If N = 0, then ILO = 1 and IHI = 0.
H
          H is COMPLEX*16 array, dimension (LDH,N)
           On entry, the upper Hessenberg matrix H.
           On exit, if INFO = 0 and JOB = 'S', H contains the upper
           triangular matrix T from the Schur decomposition (the
           Schur form). If INFO = 0 and JOB = 'E', the contents of
           H are unspecified on exit.  (The output value of H when
           INFO.GT.0 is given under the description of INFO below.)
Unlike earlier versions of ZHSEQR, this subroutine may explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
LDH
          LDH is INTEGER
           The leading dimension of the array H. LDH .GE. max(1,N).
W
          W is COMPLEX*16 array, dimension (N)
           The computed eigenvalues. If JOB = 'S', the eigenvalues are
           stored in the same order as on the diagonal of the Schur
           form returned in H, with W(i) = H(i,i).
Z
          Z is COMPLEX*16 array, dimension (LDZ,N)
           If COMPZ = 'N', Z is not referenced.
           If COMPZ = 'I', on entry Z need not be set and on exit,
           if INFO = 0, Z contains the unitary matrix Z of the Schur
           vectors of H.  If COMPZ = 'V', on entry Z must contain an
           N-by-N matrix Q, which is assumed to be equal to the unit
           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
           if INFO = 0, Z contains Q*Z.
           Normally Q is the unitary matrix generated by ZUNGHR
           after the call to ZGEHRD which formed the Hessenberg matrix
           H. (The output value of Z when INFO.GT.0 is given under
           the description of INFO below.)
LDZ
          LDZ is INTEGER
           The leading dimension of the array Z.  if COMPZ = 'I' or
           COMPZ = 'V', then LDZ.GE.MAX(1,N).  Otherwize, LDZ.GE.1.
WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
           On exit, if INFO = 0, WORK(1) returns an estimate of
           the optimal value for LWORK.
LWORK
          LWORK is INTEGER
           The dimension of the array WORK.  LWORK .GE. max(1,N)
           is sufficient and delivers very good and sometimes
           optimal performance.  However, LWORK as large as 11*N
           may be required for optimal performance.  A workspace
           query is recommended to determine the optimal workspace
           size.
If LWORK = -1, then ZHSEQR does a workspace query. In this case, ZHSEQR checks the input parameters and estimates the optimal workspace size for the given values of N, ILO and IHI. The estimate is returned in WORK(1). No error message related to LWORK is issued by XERBLA. Neither H nor Z are accessed.
INFO
          INFO is INTEGER
             =  0:  successful exit
           .LT. 0:  if INFO = -i, the i-th argument had an illegal
                    value
           .GT. 0:  if INFO = i, ZHSEQR failed to compute all of
                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
                and WI contain those eigenvalues which have been
                successfully computed.  (Failures are rare.)
If INFO .GT. 0 and JOB = 'E', then on exit, the remaining unconverged eigenvalues are the eigen- values of the upper Hessenberg matrix rows and columns ILO through INFO of the final, output value of H.
If INFO .GT. 0 and JOB = 'S', then on exit
(*) (initial value of H)*U = U*(final value of H)
where U is a unitary matrix. The final value of H is upper Hessenberg and triangular in rows and columns INFO+1 through IHI.
If INFO .GT. 0 and COMPZ = 'V', then on exit
(final value of Z) = (initial value of Z)*U
where U is the unitary matrix in (*) (regard- less of the value of JOB.)
If INFO .GT. 0 and COMPZ = 'I', then on exit (final value of Z) = U where U is the unitary matrix in (*) (regard- less of the value of JOB.)
If INFO .GT. 0 and COMPZ = 'N', then Z is not accessed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2013
Contributors:
Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA
Further Details:
             Default values supplied by
             ILAENV(ISPEC,'ZHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
             It is suggested that these defaults be adjusted in order
             to attain best performance in each particular
             computational environment.
ISPEC=12: The ZLAHQR vs ZLAQR0 crossover point. Default: 75. (Must be at least 11.)
ISPEC=13: Recommended deflation window size. This depends on ILO, IHI and NS. NS is the number of simultaneous shifts returned by ILAENV(ISPEC=15). (See ISPEC=15 below.) The default for (IHI-ILO+1).LE.500 is NS. The default for (IHI-ILO+1).GT.500 is 3*NS/2.
ISPEC=14: Nibble crossover point. (See IPARMQ for details.) Default: 14% of deflation window size.
ISPEC=15: Number of simultaneous shifts in a multishift QR iteration.
If IHI-ILO+1 is ...
greater than ...but less ... the or equal to ... than default is
1 30 NS = 2(+) 30 60 NS = 4(+) 60 150 NS = 10(+) 150 590 NS = ** 590 3000 NS = 64 3000 6000 NS = 128 6000 infinity NS = 256
(+) By default some or all matrices of this order are passed to the implicit double shift routine ZLAHQR and this parameter is ignored. See ISPEC=12 above and comments in IPARMQ for details.
(**) The asterisks (**) indicate an ad-hoc function of N increasing from 10 to 64.
ISPEC=16: Select structured matrix multiply. If the number of simultaneous shifts (specified by ISPEC=15) is less than 14, then the default for ISPEC=16 is 0. Otherwise the default for ISPEC=16 is 2.
References:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 Performance, SIAM Journal of Matrix Analysis, volume 23, pages 929--947, 2002.
 

K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part II: Aggressive Early Deflation, SIAM Journal of Matrix Analysis, volume 23, pages 948--973, 2002.
Definition at line 299 of file zhseqr.f.

Generated automatically by Doxygen for LAPACK from the source code.
Sat Nov 16 2013 Version 3.4.2

Search for    or go to Top of page |  Section 3 |  Main Index

Powered by GSP Visit the GSP FreeBSD Man Page Interface.
Output converted with ManDoc.