 |
|
| |
SRC/zlahr2.f(3) |
LAPACK |
SRC/zlahr2.f(3) |
subroutine zlahr2 (n, k, nb, a, lda, tau, t, ldt, y, ldy)
ZLAHR2 reduces the specified number of first columns of a general
rectangular matrix A so that elements below the specified subdiagonal are
zero, and returns auxiliary matrices which are needed to apply the
transformation to the unreduced part of A.
ZLAHR2 reduces the specified number of first columns of a
general rectangular matrix A so that elements below the specified
subdiagonal are zero, and returns auxiliary matrices which are needed to
apply the transformation to the unreduced part of A.
Purpose:
ZLAHR2 reduces the first NB columns of A complex general n-BY-(n-k+1)
matrix A so that elements below the k-th subdiagonal are zero. The
reduction is performed by an unitary similarity transformation
Q**H * A * Q. The routine returns the matrices V and T which determine
Q as a block reflector I - V*T*V**H, and also the matrix Y = A * V * T.
This is an auxiliary routine called by ZGEHRD.
Parameters
N
N is INTEGER
The order of the matrix A.
K
K is INTEGER
The offset for the reduction. Elements below the k-th
subdiagonal in the first NB columns are reduced to zero.
K < N.
NB
NB is INTEGER
The number of columns to be reduced.
A
A is COMPLEX*16 array, dimension (LDA,N-K+1)
On entry, the n-by-(n-k+1) general matrix A.
On exit, the elements on and above the k-th subdiagonal in
the first NB columns are overwritten with the corresponding
elements of the reduced matrix; the elements below the k-th
subdiagonal, with the array TAU, represent the matrix Q as a
product of elementary reflectors. The other columns of A are
unchanged. See Further Details.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU
TAU is COMPLEX*16 array, dimension (NB)
The scalar factors of the elementary reflectors. See Further
Details.
T
T is COMPLEX*16 array, dimension (LDT,NB)
The upper triangular matrix T.
LDT
LDT is INTEGER
The leading dimension of the array T. LDT >= NB.
Y
Y is COMPLEX*16 array, dimension (LDY,NB)
The n-by-nb matrix Y.
LDY
LDY is INTEGER
The leading dimension of the array Y. LDY >= N.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix Q is represented as a product of nb elementary reflectors
Q = H(1) H(2) . . . H(nb).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with
v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
A(i+k+1:n,i), and tau in TAU(i).
The elements of the vectors v together form the (n-k+1)-by-nb matrix
V which is needed, with T and Y, to apply the transformation to the
unreduced part of the matrix, using an update of the form:
A := (I - V*T*V**H) * (A - Y*V**H).
The contents of A on exit are illustrated by the following example
with n = 7, k = 3 and nb = 2:
( a a a a a )
( a a a a a )
( a a a a a )
( h h a a a )
( v1 h a a a )
( v1 v2 a a a )
( v1 v2 a a a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
This subroutine is a slight modification of LAPACK-3.0's ZLAHRD
incorporating improvements proposed by Quintana-Orti and Van de
Gejin. Note that the entries of A(1:K,2:NB) differ from those
returned by the original LAPACK-3.0's ZLAHRD routine. (This
subroutine is not backward compatible with LAPACK-3.0's ZLAHRD.)
References:
Gregorio Quintana-Orti and Robert van de Geijn,
'Improving the
performance of reduction to Hessenberg form,' ACM Transactions on Mathematical
Software, 32(2):180-194, June 2006.
Definition at line 180 of file zlahr2.f.
Generated automatically by Doxygen for LAPACK from the source
code.
Visit the GSP FreeBSD Man Page Interface. Output converted with ManDoc.
|